Power Distribution \& Control

Sthraitu

Part 4/5 Contactors \& Circuit Breakers

ONLINE SHOPPING!
In the office or on the road with the Live Phone App

INCL. AVAILABILITY INFORMATION
$0 \quad 0 \quad 0=-0^{2} \quad$ Ex stock

General Information

- TOP WAREHOUSE MANAGEMENT IN OUR DISTRIBUTION CENTRE NEAR VIENNA

The new Schrack distribution centres is located just outside Vienna. The prominent appearance of the building with its unmistakable Schrack design highlights all product characteristics which are handled logistically in its interior. We consider availability the number 1 factor for your economic and business success!

- Over $12,000 \mathrm{~m}^{2}$ indoor storage space and an outdoor cable storage space of $2,500 \mathrm{~m}^{2}$
- More than 15,000 items are stored ready for shipping
- Professional warehouse management by our top-trained staff

Look out for the icon signalling prompt availability for delivery

- GENERAL INFORMATION

- All dimensioned drawings are displayed within the confines of available space on the page and are only intended as a guide.
- All circuit diagrams are schematic wiring diagrams which are intended to allow better understanding of the function, and will need to be edited/added to during the course of project planning.
- All images represent samples of the product and are intended for information purposes only.

Unless otherwise stipulated, the current version of the General Terms of Delivery issued by The Association of the Austrian Electrical and Electronics Industries "FEEI" shall apply. You can find a copy of these at the end of this catalogue.

No liability for errors in text, type or images; we reserve the right to make changes to technical specifications of the product range.
The user information contained in this catalogue reflect the opinion of the company at the time of writing. The information contained in it was assembled on the basis of published norms, specialist industry presentations, specialist literature and in-house expertise. The content is for informational purposes only and has no validity in law.
Relays Page 4 - 95
Timer Relays Page $96-119$
Measuring and Monitoring Relays Page 120-155
Modular Contactors Page 156-169
Electromechanical Contactors Page 170 - 375
Thermal Overload Relays Page 376 - 407
Motor Protection Switches Page 408 - 451
Solid State Contactors Page 452 - 476
Index Page 477
Index of Order Numbers Page $478-481$

Relays

Relays

Plug-in Relays Page 6
Relay Sockets \& Sets Page 36
Print Relays Page 58
Force-guided Contacts Relays Schrack, Series SR Page 85
Modular Relays Page 92
PLC Series EASY Page 94

- Relay Package Schrack, Series SNR

- Schrack-Info
- Relay package consisting of a relay and a DIN rail socket
- 1 CO 6 A rated current
- Safe disconnection compliant with VDE 0160 in combination with socket YRT78626
- Module width only 6.2 mm
- Narrow component width allows high component density and tight-packed functionality on the DIN rail
- Complies with the 2011/65/EU RoHS Directive
- Protection diode

Dimensions (mm)

Circuit Diagram

Dimensions \& Circuit Diagram

A	Screw terminals
B	Spring clamp terminals
C	Dimensions SNR relay
D	Bottom view on solder pins
E	1 CO

Relay Package Schrack, Series SNR
Rated Breaking Capacity

Technical Data

CONTACT DATA	6 A
Number of contact and type	1 CO
Contact style	Single contact
Type of disconnection	Micro-switch
Rated current	6 A
Rated voltage/ max. switching voltage AC	240 / $400 \mathrm{~V} \sim$
Max. rated breaking capacity AC	1500 VA
Limiting making capacity, max 4 s , duty factor 10%	10 A
Contact material	$\mathrm{AgSnO}_{2}, \mathrm{AgSnO}_{2}$ hard gold plated
INPUT DATA	
Rated voltage	12, 24 V DC, $115,230 \mathrm{~V}$ AC / V DC (type 115, $230 \mathrm{~V} \mathrm{AC} \mathrm{/} \mathrm{~V} \mathrm{DC} \mathrm{mit} 60 \mathrm{~V}$ DC relay)
Rated power DC coil	12 V DC $184 \mathrm{~mW}, 24 \mathrm{~V}$ DC $220 \mathrm{~mW}, 115 \mathrm{~V}$ AC $402 \mathrm{mVA}, 230 \mathrm{~V}$ AC 736 mVA
Operation range according to IEC 61810	2
GENERAL DATA	
Ambient temperature	$-40 . . .55^{\circ} \mathrm{C}$
Degree of protection DIN 40050	IP20
Terminals	Screw terminals/ spring clamp terminals
Terminal screw torque according to IEC 61984	0.5 Nm
Max.	0.6 Nm
$\begin{array}{ll}\text { Wire cross section } & \text { Solid wire } \\ & \text { Stranded wire } \\ & \text { With ferrule (DIN 46228/1) }\end{array}$	$0.14 \ldots 2.5 \mathrm{~mm}^{2}$ $0.14 \ldots 2.5 \mathrm{~mm}^{2}$ $0.14 \ldots 2.5 \mathrm{~mm}^{2}$

DESCRIPTION	AVAILABLE	ORDER NO.
Relay Package - Screw Terminal		
12V-DC, 1 CO, 6A with socket	[000-6	ST3P3LB2
24V-DC, 1 CO, 6A with socket		ST3P3LC4
24V-DC, 1 CO, 6A with socket		ST3P2LC4
230V-AC/DC, 1 CO, 6A with socket	- -80	ST3P3TP0
Relay Package - Spring Clamp Terminal		
24V-DC, 1 CO, 6A with socket		ST4P3LC4
230V-AC/DC, 1 CO, 6A with socket	0000	ST4P3TP0

Accessories

DIN rail mounted plug-in socket for SNR relays, 24V-DC, 6A, incl. protection diode, with screw terminals	[-000-9,	ST3FLC4
SNR jumper bar, red, 500 mm	- -8000	ST37001
SNR jumper bar, blue, 500 mm		ST37002
SNR jumper bar, grey, 500 mm		ST37003
Marking plate, 1 plate $=100 \mathrm{pcs}$.	-000-9,	ST37040

Plug-in Relays

- Power Relays Schrack, Series RT

Schrack-Info

RTI

- 1 pole $12 / 16$ A, AC or DC coil
- 1 CO or 1 NO
- Sensitive coil $400 \mathrm{~mW} / 0.75 \mathrm{VA}$
- $5 \mathrm{kV}, 10 \mathrm{~mm}$ coil/contact
- Appliance class II (VDE 0700)
- Safe disconnection compliant with VDE 0160 in combination with socket YRT78626
- Ambient temperature $85^{\circ} \mathrm{C}$ (DC coil)
- Low component height 15.7 mm
- Gold plated contacts available
- Print and screw type sockets
- For boiler controls, timer relays, garage door controls, vending machines, interface modules

RT1 Inrush and High Inrush

- 1 pole 16 A, for high peak inrush current
- 1 NO
- RTS3T024 (= High Inrush) with Tungsten early-make contact
- Sensitive coil 400 mW
- $5 \mathrm{kV}, 10 \mathrm{~mm}$ coil/contact
- Appliance class II (VDE 0700)
- Ambient temperature $85^{\circ} \mathrm{C}$
- Low component height 15.7 mm
- Print and screw type sockets
- For household appliances, heating controls, light controls, building automation

RT2

- 2 poles 8 A, AC or DC coil
- 2 CO
- Sensitive coil 400 mW
- $5 \mathrm{kV}, 10 \mathrm{~mm}$ coil/contact
- Appliance class II (VDE 0700)
- Safe disconnection compliant with VDE 0160 in combination with socket YRT78626
- Low component height 15.7 mm
- Print and screw type sockets
- For household appliances, heating controls, emergency lighting, modems

Plug-in Relays

Power Relays Schrack, Series RT

- RT Overview

Relays	Number of contacts and type	Rated current [A]	Coil		Pinning [mm]	Contact material	RT1	RTI Inrush	RT1 High Inrush	RT2
RT114012	1 CO	12	DC	12 V	3.5	AgNi90/10	X			
RT114024	1 CO	12	DC	24 V	3.5	AgNi90/10	X			
RT114524	1 CO	12	AC	24 V	3.5	AgNi90/10	X			
RT214012	1 CO	12	DC	12 V	5	AgNi90/10	X			
RT214024	1 CO	12	DC	24 V	5	AgNi90/10	X			
RT214730	1 CO	12	AC	230 V	5	AgNi90/10	X			
RT314005	1 CO	16	DC	5 V	5	AgNi90/10	X			
RT314012	1 CO	16	DC	12 V	5	AgNi90/10	X			
RT314024	1 CO	16	DC	24 V	5	AgNi90/10	X			
RT334024	1 NO	16	DC	24 V	5	AgNi90/10	X			
RT314110	1 CO	16	DC	110 V	5	AgNi90/10	X			
RT314524	1 CO	16	AC	24 V	5	AgNi90/10	X			
RT314730	1 CO	16	AC	230 V	5	AgNi90/10	X			
RT315730	1 CO	16	AC	230 V	5	AgNi90/10 hgp*	X			
RT33K012	1 NO	16	DC	12 V	5	AgNi90/10		X		
RT33K024	1 NO	16	DC	24 V	5	AgNi90/10		X		
RT31 L024	1 CO	16	DC	24 V	5	AgSnO_{2}		X		
RTS3T024	1 NO	16	DC	24 V	5	$\mathrm{T}^{* *}+\mathrm{AgSnO}_{2}$			X	
RT424006	2 CO	8	DC	6 V	5	AgNi90/10				X
RT424012	2 CO	8	DC	12 V	5	AgNi90/10				X
RT424024	2 CO	8	DC	24 V	5	AgNi90/10				X
RT425024	2 CO	8	DC	24 V	5	AgNi90/10 hgp*				X
RTE24024	2 CO	8	DC	24 V	5	AgNi90/10				X
RT424048	2 CO	8	DC	48 V	5	AgNi90/10				X
RT424060	2 CO	8	DC	60 V	5	AgNi90/10				X
RT424110	2 CO	8	DC	110 V	5	AgNi90/10				X
RT424524	2 CO	8	AC	24 V	5	AgNi90/10				X
RT424548	2 CO	8	AC	48 V	5	AgNi90/10				X
RT424615	2 CO	8	AC	115 V	5	AgNi90/10				X
RT425615	2 CO	8	AC	115 V	5	AgNi90/10 hgp*				X
RT424730	2 CO	8	AC	230 V	5	AgNi90/10				X
RT425730	2 CO	8	AC	230 V	5	AgNi90/10 hgp*				X

*hgp = hard gold-plated
**Tungsten pre-contact
Dimensions (mm)

Plug-in Relays

- Power Relays Schrack, Series RT

Circuit Diagrams

\#5. 3

Circuit Diagrams, Contacts \& Pinning

A	RT1
B	RT1 Inrush and High Inrush
C	RT2
\#1.1	12 A, pinning 3.5 mm
\#1.2	1 CO
\#1.3	1 NO
\#2.1	12 A, pinning 5 mm
\#2.2	1 CO
\#2.3	1 NO

$\# 3.1$	16 A, pinning 5 mm
$\# 3.2$	1 CO
$\# 3.3$	1 NO
$\# 4.1$	16 A, pinning 5 mm
$\# 4.2$	1 NO
$\# 4.3$	1 CO
$\# 5.1$	8 A, pinning 5 mm
$\# 5.2$	2 CO
$\# 5.3$	2 NO

General Info
View of the terminals, dimensions in mm . Equipping with indicated hole diameter also possible in 2.5 mm or 2.54 mm contact spacing.

Power Relays Schrack, Series RT

Rated Breaking Capacity \& Coil Operating Voltage Range RTI

Rated Breaking Capacity \& Coil Operating Voltage Range RT 1 Inrush And High Inrush

Rated Breaking Capacity \& Coil Operating Voltage Range RT2

Rated Breaking Capacity \& Coil Operating Voltage Ranges

RTI	
\mathbf{A}	Max. DC rated breaking capacity
\mathbf{B}	Coil operating range DC
\mathbf{C}	Coil operating range AC
$\mathbf{\# 1}$	Resistive load
$\boldsymbol{\# 2}$	16 A version
$\boldsymbol{\# 3}$	Recommended voltage range in $[\mathrm{V}]$
\mathbf{U}	DC voltage in $[\mathrm{V}]$
$\mathbf{U} / \mathbf{U}^{\text {rtd }}$	Coil voltage in $[\mathrm{V}]$
\mathbf{I}	DC current in $[\mathrm{A}]$
\boldsymbol{U}	Ambient temperature in $\left[{ }^{\circ} \mathrm{C}\right]$

RT1 Inrush and High Inrush	
A	Max. DC rated breaking capacity
B	Coil operating range DC (RT3)
\mathbf{C}	Coil operating range DC (RTS)
\#1	Resistive load
\#2	Recommended voltage range in [V]
\#3	Monostable version
\mathbf{U}	DC voltage in [V]
$\mathbf{U / U} / \mathbf{U}^{\text {rd }}$	Coil voltage in [V]
\mathbf{I}	DC current in [A]
\boldsymbol{U}	Ambient temperature in $\left[{ }^{\circ} \mathrm{C}\right]$

RT2

RT2	
A	Max. DC rated breaking capacity
B	Coil operating range DC
C	Coil operating range AC
\#1	1 contact
\#2	2 pole resistive load
\#3	2 contacts in series
\#4	Recommended voltage range in [V]
\#5	Rated coil voltage in [V]
U	DC voltage in [V]
$\mathbf{U} / \mathbf{U}^{\text {rid }}$	Coil voltage in [V]
1	DC current in [A]
$ง$	Ambient temperature in [${ }^{\circ} \mathrm{C}$]

Plug-in Relays

Power Relays Schrack, Series RT

- Technical Data

RTI

RT1 Inrush and High Inrush

CONTACT DATA		RT3	RTS
Number of contacts and type		1 CO or 1 NO	1 NO
Contact style		Single contact	
Rated current		16 A	
Rated voltage / max. switching voltage AC		$250 / 400 \mathrm{~V}$	
Limiting continuous current		16 A	
Max. rated breaking capacity AC		4000 VA	
Limiting making current		30 A (max. 4 s at 10% DF)	165 A (max. 20 ms incandescent lamps) 800 A (max. $200 \mu \mathrm{~s}$ fluorescent lamps)
Contact material		$\mathrm{AgNi} 90 / 10, \mathrm{AgSnO}_{2}$	W (lead contact) $+\mathrm{AgSnO}_{2}$
COIL DATA			
Rated voltage		$5 . .110 \mathrm{~V}$ DC	
Rated power		400 mW	
Operative range, IEC 61810		2	
Coil insulation system according to UL1446		Class F	
Operation-/ release voltage/ coil resistance	24 V DC coil	$16.8 \mathrm{~V} / 2.4 \mathrm{~V} / 1440 \Omega \pm 10 \%$	
at ambient temperature $23{ }^{\circ} \mathrm{C}$	230 V AC coil	-	$172.5 \mathrm{~V} / 34.5 \mathrm{~V} / 32500 \Omega \pm 10 \%$

RT2

CONTACT DATA	$\mathbf{8 ~ A ~}$
Number of contacts and type	2 CO
Contact style	Single contact
Rated current	8 A
Rated voltage/max. switching voltage AC	$250 \mathrm{~V} / 400 \mathrm{~V} \sim$
Limiting continuous current	$8 \mathrm{~A}, \mathrm{UL}: 10 \mathrm{~A}$
Max. rated breaking capacity AC	200 VA
Limiting making current (max. 4 s at 10 \% DF)	15 A
Contact material	
COIL DATA	DC coil
Rated voltage	AC coil
	DC coil
Rated power	AC coil

Power Relays Schrack, Series RT
DESCRIPTION
Power Relays RTI, 12A

Power Relays RTI, 12A
12V-DC, 1 CO, 12A
24V-DC, 1 CO, 12A
24V-AC, 1 CO, 12A
12V-DC, 1 CO, 12A
24V-DC, 1 CO, 12A
230V-AC, 1 CO, 12A
Power Relays RT1, 16A

$5 \mathrm{~V}-\mathrm{DC}, 1 \mathrm{CO}, 16 \mathrm{~A}$	
$12 \mathrm{~V}-\mathrm{DC}, 1 \mathrm{CO}, 16 \mathrm{~A}$	
$24 \mathrm{~V}-\mathrm{DC}, 1 \mathrm{CO}, 16 \mathrm{~A}$	
$24 \mathrm{~V}-\mathrm{DC}, 1 \mathrm{NO}, 16 \mathrm{~A}$	
$24 \mathrm{~V}-\mathrm{AC}, 1 \mathrm{CO}, 16 \mathrm{~A}$	
$230 \mathrm{~V}-\mathrm{AC}, 1 \mathrm{CO}, 16 \mathrm{~A}$	
$230 \mathrm{~V}-\mathrm{AC}, 1 \mathrm{CO}, 16 \mathrm{~A}$, gold plated	

- - - - -	RT314005
0×0	RT314012
[-000-8)	RT314024
-600-9,	RT334024
$+\infty=$	RT314524
-000-0,	RT314730
- 000000	RT315730

Power Relays RT1 Inrush and High Inrush

12V-DC, 1 NO, 16A
$24 \mathrm{~V}-\mathrm{DC}, 1 \mathrm{NO}, 16 \mathrm{~A}$
$24 \mathrm{~V}-\mathrm{DC}, 1 \mathrm{CO}, 16 \mathrm{~A}$

-000-6000	RT33K012
[-000-0,	RT33K024
	RT31 L024

Power Relays RTI High Inrush

24V-DC, 1 NO, 16A	-	RTS3T024
Power Relays RT2		
6V-DC, 2 CO, 8A	- $+0 \times 0$	RT424006
12V-DC, 2 CO, 8A	-000-9,	RT424012
24V-DC, $2 \mathrm{CO}, 8 \mathrm{~A}$	-800-9,	RT424024
24V-DC, $2 \mathrm{CO}, 8 \mathrm{~A}$, gold plated	-000-9,	RT425024
24V-DC, $2 \mathrm{CO}, 8 \mathrm{~A}$	- $-\cdots \cdots$	RTE24024
48V-DC, 2 CO, 8A	-000080	RT424048
60V-DC, $2 \mathrm{CO}, 8 \mathrm{~A}$	- -2000	RT424060
110V-DC, 2 CO, 8A	- $-\times 000$	RT424110
24V-AC, 2 CO, 8A	$+\infty 0$	RT424524
48V-AC, $2 \mathrm{CO}, 8 \mathrm{~A}$	-000-9,	RT424548
115V-AC, $2 \mathrm{CO}, 8 \mathrm{~A}$	$+00 \%-\infty$	RT424615
115V-AC, $2 \mathrm{CO}, 8 \mathrm{~A}$, gold plated	[-000]	RT425615
230V-AC, $2 \mathrm{CO}, 8 \mathrm{~A}$	-500-0,	RT424730
230V-AC, 2 CO, 8A, gold plated	-000-0,	RT425730

Spring Clamp Terminal Plug-in Socket for Power Relays RT

Plug-in Socket for Power Relays RT

DIN rail mounted plug-in socket for RT1x relays, pinning 3.5 mm , max. 12A, I/O - logical arrangement, with screw terminals

terminals

DIN rail mounted plug-in socket for XT, RT $2 x$ x, RT3x, RT4x relays, pinning 5 mm , max. 12A, I/O - logical arrangement, with screw
DIN rail mounted plug-in socket for RT2x, RT3x, RT4x relays, pinning 5mm, max. 16A, conventional arrangement, with screw
terminals

Jumper bar for connection of up to 8 RT-sockets

- 50000	RT78725
	RT17017
-80-0-8	RT170R8
-080-9,	YRT 16040

Modules Matching Plug-in Socket for Power Relays RT

LED module, red, $6-24 V$ AC/DC, EM07	YMLRA024	
LED module, red, $6-24 V$ DC, A1+, EM 18	YMLRD024-A	
LED module, red, $6-24 V$ DC, A1-, EM08	YMLRD024	0000

Plug-in Relays

Power Relays Schrack, Series RT

DESCRIPTION	AVAILABLE	ORDER NO.
Modules Matching Plug-in Socket for Power Relays RT		
LED module, red, 110-230V AC, EM06	-80008080	YMLRW230
LED module, green, 6-24V AC/DC, EM 11	- -80000	YMLGA024
LED module, green 6-24V DC with protection diode, A1+, EM 12	[-0000]	YMLGD024
LED module, green, 110-230V AC, EM 10		YMLGW230
Protection diode module 6-230V DC, A1+, EM09	- -0×0	YMFDG230
RC Network module 6-60V AC, EM02	$+\infty=0$	YMRCW024
RC Network module 110-230V AC, EMO3	$+\infty=0$	YMRCW230
Varistor module, 24V-AC, EM04	$\begin{array}{lll} \hline-00 & 0 \\ \hline \end{array}$	YMVAW024
Varistor module 230V-AC, EM05	$+0000$	YMVAW230

Pluggable Interface Relay Schrack, Series XT

Schrack-Info

- 1 pole $16 \mathrm{~A}, 2$ poles 8 A , 1 or 2 CO
- AC or DC coil, sensitive coil 400 mW
- Reinforced insulation, appliance class II (VDE 0700)
- Safe disconnection complaint with VDE 0160 in combination with socket YRT78626
- $4 \mathrm{kV}, 8 \mathrm{~mm}$ coil/contact
- Lockable manual testing system (see drawing "How To Use")
- Optional model with mechanical and/or electrical indication
- Suitable for standard RT sockets
- Recyclable packaging
- Complies with the 2011/65/EU RoHS Directive
- For control panels, machine building

Dimensions (mm)

Plug-in Relays

- Pluggable Interface Relay Schrack, Series XT

Circuit Diagrams

How To Use

How To Use

Description of the locking function: If the test button is pulled out to forcibly, it may skip the test position and move directly to the locking position. To go to the locking position, please remove the plastic locking cam (see drawing).

Circuit Diagrams

\#1	$16 \mathrm{~A}, 1 \mathrm{CO}$
\#2	$8 \mathrm{~A}, 2 \mathrm{CO}$
General info	View of the terminals, dimensions in mm

Rated Breaking Capacity \& Coil Operating Voltage Range

Rated Breaking Capacity \& Coil Operating Voltage Range

\mathbf{A}	Max. DC rated breaking capacity
\mathbf{B}	Coil operating range DC
\mathbf{C}	Coil operating range AC
\mathbf{U}	DC voltage in $[\mathrm{V}]$
$\mathbf{U} / \mathbf{U}^{\text {rd }}$	Coil voltage in $[\mathrm{V}]$
\mathbf{I}	DC current in $[\mathrm{A}]$
\boldsymbol{U}	Ambient temperature in $\left[{ }^{\circ} \mathrm{C}\right]$

\#1	1 pole $12 / 16$ A resistive load
\#2	2 pole 8 A resistive load
\#3	2 contacts in series
\#4	1 contact
\#5	Versions without LED
\#6	Recommended voltage range in $[\mathrm{V}]$

- Pluggable Interface Relay Schrack, Series XT

- Technical Data

DESCRIPTION	AVAILABLE	ORDER NO.
Pluggable Interface Relay XT		
24V-DC, 1 CO, 16A, with LED and protection diode	[-000-608	XT374LC4
24V-DC, $2 \mathrm{CO}, 8 \mathrm{~A}$, with LED and protection diode	- $-\times 0$ -	XT484LC4
24V-AC, 2 CO, 8A, with LED		XT484R24
230V-AC, 2 CO, 8A, with LED	$+500-\pi$	XT484T30
Spring Clamp Terminal Plug-in Socket for Relays, Series XT		
DIN rail mounted plug-in socket for RT2x, RT3x, RT4x, XT, RP4x relays, pinning 5mm, max. 16A, with spring clamp terminals	- $50-6$	RT7872P
Retaining clip for RT relays with ejection function		RT17017
Retaining clip for XT and RP relays with ejection function		XT 17017
Jumper link for connection of RT7872P	$+000-0$	RT170P 1

Plug-in Socket for Relays, Series XT

DIN rail mounted plug-in socket for RT1x relays, pinning 3.5mm, max. 12A, I/O - logical arrangement, with screw terminals
DIN rail mounted plug-in socket for XT, RT2x, RT3x, RT4x relays, pinning 5mm, max. 12A, I/O-logical arrangement, with screw
terminals
DIN rail mounted plug-in socket for RT2x, RT3x, RT4x relays, pinning 5mm, max. 16A, conventional arrangement, with screw
terminals
Retaining clip for RT relays with ejection function
Retaining clip for XT and RP relays with ejection function
Jumper bar for connection of up to 8 RT-sockets
Marking tag (for YRT sockets YRT78624 and YRT78626)

Accessories for Plug-in Sockets, Series XT

LED module, red, 6-24V AC/DC, EM07		YMLRA024
LED module, red, 6-24V DC, A1+, EM 18		YMLRD024-A
LED module, red, 6-24V DC, A1-, EM08		YMLRD024
LED module, red, 110-230V AC, EM06	$\begin{aligned} & -80 \\ & \hline 00 \\ & \hline \end{aligned}$	YMLRW230
LED module, green, 6-24V AC/DC, EM 11	-0000	YMLGA024
LED module, green 6-24V DC with protection diode, $\mathrm{Al}+$, EM 12		YMLGD024
LED module, green, 110-230V AC, EM 10	$+\infty 0 \infty$	YMLGW230
Protection diode module 6-230V DC, Al+, EM09	- $-\infty \times 1$	YMFDG230
RC Network module 6-60V AC, EM02	-000-0,	YMRCW024
RC Network module 110-230V AC, EM03	$+50-6$	YMRCW230
Varistor module, 24V-AC, EM04	- -0×0	YMVAW024
Varistor module 230V-AC, EM05	$+\infty=-n$	YMVAW230

Plug-in Relays

- Plug-in Relays S-Relay, Series 4

Schrack-Info

S-RELAY

- Miniature industry-grade relay for multi-purpose application
- AC and DC coil
- Suitable for DIN rail mounted plug-in sockets, for use in control panel building or on PCBs (PCB and soldering connectors)
- Mechanical indicator and lockable test button
- Integrated insulated contact chambers for increased flash-over resistance
- Cadmium-free contact material
- Certificate: VDE

Socket YRS78704

- Socket for S-RELAY Series 4
- Suitable for mounting in electrical enclosures or for DIN rail mounting
- High-grade terminals preventing incorrect insertion
- Captive terminal screws

LED and protection modules

- Compatible with socket YRS78704
- LED DC modules with integrated protection diode
- Retrofittable
- Plug-in Relays S-Relay, Series 4

Dimensions (mm)

Circuit Diagrams

\#1

\#2
\#3

\#2.1
\#2. 2

\#2. 3
\#2.4

Circuit Diagrams		
\#1	Circuit diagram	S-RELAY
\#2	Terminals	
\#2.1	NO contacts	
\#2.2	NC contacts	Socket
\#2.3	Coil	
\#2.4	Com	
\#3	Circuit diagram	Protection diode module

Plug-in Relays

Plug-in Relays S-Relay, Series 4
Rated Breaking Capacity, Reduction Factor \& Coil Operating Voltage Range

Rated Breaking Capacity, Reduction Factor \& Coil Operating Voltage Range

\mathbf{A}	Electrical service life at AC resistive load, switching frequency: 1.200 cycles/hour
\mathbf{B}	Electrical service life reduction factor at AC inductive load
\mathbf{C}	Max. DC rated breaking capacity
\mathbf{N}	Number of cycles/ electrical service life at AC1
\mathbf{S}	Rated breaking capacity in [kVA]
\mathbf{F}	Reduction factor
$\boldsymbol{\operatorname { c o s } \boldsymbol { \varphi }}$	Power factor
\mathbf{D}	Resistive load DC1
\mathbf{E}	Inductive load L/R $=40 \mathrm{~ms}$
\mathbf{I}	DC current in [A]
\mathbf{U}	DC current in [A]
Coil Types	

COIL DATA - DC voltage version

Coil code	Rated voltage V DC	Coil resistance Ω at $20^{\circ} \mathrm{C}$	Acceptable resistance	Coil operating range V DC	
				min. (at $20^{\circ} \mathrm{C}$)	max. (at $55^{\circ} \mathrm{C}$)
006	6	40	+10\%	4,8	6,6
012	12	160	+10\%	9,6	13,2
024 / LC4	24	640	+10\%	19,2	26,4
048	48	2600	+10\%	38,4	52,8
060	60	4000	+10\%	48	66
110	110	13600	+10\%	88	121
220 / N20	220	54000	+10\%	165 / 176	242

COIL DATA - AC $50 / 60 \mathrm{~Hz}$ voltage version

Coil code	Rated voltage V AC	Coil resistance Ω at $20^{\circ} \mathrm{C}$	Acceptable resistance	Coil operating range V AC	
				min. (at $20^{\circ} \mathrm{C}$)	max. (at $55^{\circ} \mathrm{C}$)
506	6	9,8	+10\%	4.8	6.6
512	12	39,5	+10\%	9.6	13.2
524 / R24	24	158	+10\%	19.2	26.4
548	48	640	+10\%	38.4	52.8
615 / S15	115	3610	+10\%	92	127
730 / T30	230	16100	+10\%	184	253

TECHNICAL DATA, Protection diode module

Voltage	$6 \ldots 230 \mathrm{VDC}$
Wiring	$\mathrm{A} 1+$
	$\mathrm{A} 2-$

\square Plug-in Relays S-Relay, Series 4

- Technical Data

CONTACT DATA			
Number and type of contacts			4 CO
Contact material			AgNi
Rated/ max. switching voltage AC			$250 / 250 \mathrm{~V} \sim$
Min. switching load			$10 \mathrm{~V}(\mathrm{AgNi})$
Rated load (capacity)		AC1	$6 \mathrm{~A} / 250 \mathrm{~V} \sim$
		AC15	1.5 A / $120 \mathrm{~V} \mathrm{\sim} ; 0.75 \mathrm{~A} / 240 \mathrm{~V}$ (C300)
		AC3	125 W (single-phase motor)
		DC1	$6 \mathrm{~A} / 24 \mathrm{~V}$ DC
		DC13	$0.22 \mathrm{~A} / 120 \mathrm{~V}$ DC; 0.1 A / 250 V DC (R300)
Min. switching current			5 mA
Max. inrush current			12 A
Rated current			6 A
Max. rated breaking capacity		AC1	1500 VA
Min. rated breaking capacity			0.3 W (AgNi)
Contact resistance			$\leq 100 \mathrm{~m} \Omega$
Max. operating capacity	At rated load	AC1	1200 cycles/hour
	No load		18000 cycles/hour
COIL DATA			
Rated voltage $50 / 60 \mathrm{~Hz}$		AC $50 / 60 \mathrm{~Hz}$	6... $240 \mathrm{~V} \sim$
		DC	5...220 V
Must release voltage		AC	$\geq 0.2 \mathrm{U}_{\mathrm{N}}$
		DC	$\geq 0.1 U_{N}$
Operating range of supply voltage			See table "Coil types"
Rated power consumption		AC	1.6 VA
		DC	0.9 W
Insulation			According to PN-EN 60664-1
Insulation class			B250
Insulation rated voltage			250 V ~
Rated surge voltage			$2500 \mathrm{~V} ; 1.2 / 50 \mu \mathrm{~s}$
Overvoltage category			11
Insulation pollution degree			2
Dielectric strength		Between coil and contacts	$2500 \mathrm{~V} \sim$ (basic insulation)
		Contact clearance	$1500 \mathrm{~V} \sim$ (micro-disconnection clearance)
		Pole-pole	$2000 \mathrm{~V} \sim$ (basic insulation)
Contact - coil distance			
Clearance			$\geq 1.6 \mathrm{~mm}$
Creepage			$\geq 3.2 \mathrm{~mm}$
GENERAL DATA			
Operating/release time (typical value)		AC	10 / 8 ms
		DC	$13 / 3 \mathrm{~ms}$
Electrical service life		Resistive AC1	$>10^{5}, 6 \mathrm{~A} / 250 \mathrm{~V}$
		$\cos \varphi$	See diagram
Mechanical service life (cycles)			$>2 \times 10^{7}$
Dimensions (LxW×H)			$27.5 \times 21.2 \times 35.6 \mathrm{~mm}$
Weight			35 g
Ambient temperature	Storage		$-40 . . .+85^{\circ} \mathrm{C}$
	Operating	AC	$-40 . . .+55^{\circ} \mathrm{C}$
		DC	$-40 \ldots+70^{\circ} \mathrm{C}$
Cover degree of protection			IP40
Environmental protection			RTI
Shock resistance		($\mathrm{NO} / \mathrm{NC)}$	$10 / 5 \mathrm{~g}$
Vibration resistance			$5 \mathrm{~g} ; 10 \ldots 150 \mathrm{~Hz}$
Solder bath temperature			max. $270{ }^{\circ} \mathrm{C}$
Soldering time			max. 5 sec .

Plug-in Relays

Plug-in Relays S-Relay, Series 4

Plug-in Socket for S-Relay 4 Poles, Series 4

Plug-in Relays Schrack, Series PT

Circuit Diagrams

Dimensions \& Circuit Diagrams

A	Soldering and plug-in terminals (standard version)
B	LED
C	Protection diode and LED
D	Bottom view on pins
E	4 pole
F	3 pole
\mathbf{G}	2 pole

Plug-in Relays

- Plug-in Relays Schrack, Series PT

Rated Breaking Capacity \& Coil Operating Voltage Range

Rated Breaking Capacity \& Coil Operating Voltage Range

A	Max. DC rated breaking capacity
B	Electrical endurance
C	Coil operating range DC
D	Coil operating range AC
\#1	1 contact
\#2	2 contacts in series
\#3	3 contacts
\#4	4 contacts
\#5	Resistive load
\#6	4 pole

\#7	3 pole
\#8	2 pole
\#9	250 V AC resistive load
\#10	Recommended voltage range in [V]
\mathbf{U}	DC voltage in [V]
$\mathbf{U} / \mathbf{U}^{\text {rd }}$	Coil voltage in [V]
\mathbf{I}	DC current in $[\mathrm{A}]$
$\mathbf{I 1}$	Switching current in $[\mathrm{A}]$
\mathbf{Z}	Cycles
\boldsymbol{U}	Ambient temperature in $\left[{ }^{\circ} \mathrm{C}\right]$

- Plug-in Relays Schrack, Series PT
- Technical Data

CONTACT DATA		PT2	PT3	PT5
Number of contacts and type		2 CO	3 CO	4 CO
Contact style		Single contact		
Type of disconnection		Micro-switch		
Rated current		12 A	10 A	6 A
Rated voltage/ max. switching voltage AC		240 / $400 \mathrm{~V} \sim$		$240 / 240 \mathrm{~V} \sim$
Limiting continuous current		12 A	10 A	6 A
Limiting short time current 30 ms		300 A		
Max. rated breaking capacity AC		3000 VA	2500 VA	1500 VA
Limiting making current, max. 20 ms		24 A	20 A	12 A
Contact material		$\mathrm{AgNi} 90 / 10, \mathrm{AgNi} 90 / 10$ hard gold plated		
Minimal contact load		$12 \mathrm{~V} / 10 \mathrm{~mA}, 20 \mathrm{mV} / 1 \mathrm{~mA}$ hard gold plated		
COIL DATA				
Rated voltage	DC coil	6... 220 V		
	AC coil	$6 . .230 \mathrm{~V}$		
Rated power	DC coil	750 mW		
	AC coil	1.0 VA		
Operative range, IEC 61810		2		
Coil insulation system according to UL1446		Class F		
Operation-/ release voltage/ coil resistance	6 V DC coil	$4.5 \mathrm{~V} / 0.6 \mathrm{~V} / 48 \Omega \pm 10 \%$		
at ambient temperature $23{ }^{\circ} \mathrm{C}$	12 V DC coil	$9 \mathrm{~V} / 1.2 \mathrm{~V} / 192 \Omega \pm 10 \%$		
	24 V DC coil	$18 \mathrm{~V} / 2.4 \mathrm{~V} / 777 \Omega \pm 10 \%$		
	48 V DC coil	$36 \mathrm{~V} / 4.8 \mathrm{~V} / 3072 \Omega \pm 10 \%$		
	60 V DC coil	$45 \mathrm{~V} / 6 \mathrm{~V} / 4845 \Omega \pm 12$ \%		
	110 V DC coil	$82.5 \mathrm{~V} / 11 \mathrm{~V} / 16133 \Omega \pm 15 \%$		
	220 V DC coil	$165 \mathrm{~V} / 22 \mathrm{~V} / 64533 \Omega \pm 10 \%$		
	6 VAC coil*	$4.8 \mathrm{~V} / 1.8 \mathrm{~V} / 11 \Omega \pm 10 \%$		
	$12 \mathrm{~V} \mathrm{AC} \mathrm{coil*}$	$9.6 \mathrm{~V} / 3.6 \mathrm{~V} / 48 \Omega \pm 10 \%$		
	$24 \mathrm{~V} \mathrm{AC} \mathrm{coil*}$	$19.2 \mathrm{~V} / 7.2 \mathrm{~V} / 192 \Omega \pm 10 \%$		
	48 V AC coil*	$38.4 \mathrm{~V} / 14.4 \mathrm{~V} / 777 \Omega \pm 10 \%$		
	115 V AC coil*	$92 \mathrm{~V} / 34.5 \mathrm{~V} / 4845 \Omega \pm 12 \%$		
	230 V AC coil*	$184 \mathrm{~V} / 69 \mathrm{~V} / 19465 \Omega \pm 15 \%$		

*50 Hz

DESCRIPTION	AVAILABLE	ORDER NO.
PT Relays 2 Poles		
24V-DC, 2 CO, 12A		PT270024
48V-DC, $2 \mathrm{CO}, 12 \mathrm{~A}$		PT270048
24V-AC, 2 CO, 12A		PT270524
230V-AC, 2 CO, 12A		PT270730
Plug-in Socket for PT Relays 2 Poles		
DIN rail mounted plug-in socket for PT2 relays, 8 pole, 12A (2 CO)	[-80-8	YPT78702
Retaining clip metal	0×0	PT28800
PT Relays 3 Poles		
24V-DC, 3 CO, 10A		PT370024
110V-DC, 3 CO, 10A	-000-n	PT370110
$24 \mathrm{~V}-\mathrm{AC}, 3 \mathrm{CO}, 10 \mathrm{~A}$		PT370524
230V-AC, 3 CO, 10A	- -0.0	PT370730
Plug-in Socket for PT Relays 3 Poles		
DIN rail mounted plug-in socket for PT3 relays, 11 pole, 10A (3 CO)	- -80	YPT78703
PT Relays 4 Poles		
6V-DC, 4 CO, 6A	- $-6-5$	PT570006
12V-DC, 4 CO, 6A	0×0	PT570012
24V-DC, 4 CO, 6A		PT570024
48V-DC, 4 CO, 6A	-600-0.0)	PT570048
110V-DC, 4 CO, 6A with LED and protection diode		PT570MB0
60V-DC, $4 \mathrm{CO}, 6 \mathrm{~A}$	- -1000	PT570060
110V-DC, 4 CO, 6A		PT570110
125V-DC, 4 CO, 6A	-000-0.0)	PT570125
220V-DC, 4 CO, 6A	$+\infty=\infty$	PT570220
6V-AC, $4 \mathrm{CO}, 6 \mathrm{~A}$	- -1000	PT570506
12V-AC, $4 \mathrm{CO}, 6 \mathrm{~A}$	-000-0,	PT570512

Plug-in Relays

- Plug-in Relays Schrack, Series PT

DESCRIPTION	AVAILABLE	ORDER NO.
PT Relays 4 Poles		
24V-AC, 4 CO, 6A	-000000	PT570524
$48 \mathrm{~V}-\mathrm{AC}, 4 \mathrm{CO}, 6 \mathrm{~A}$		PT570548
$115 \mathrm{~V}-\mathrm{AC}, 4 \mathrm{CO}, 6 \mathrm{~A}$	0×0	PT570615
230V-AC, 4 CO, 6A		PT570730
24V-DC, 4 CO, 6A with LED and protection diode	0×0	PT570LC4
24V-DC, 4 CO, 6A with LED	-00\%	PT570L24
20V-DC, 4 CO, 6A with LED	-000-0)	PT570N20
24V-DC, 4 CO, 6A with LED	000\%	PT570R24
$115 \mathrm{~V}-\mathrm{AC}, 4 \mathrm{CO}, 6 \mathrm{~A}$ with LED		PT570S 15
230V-AC, $4 \mathrm{CO}, 6 \mathrm{~A}$ with LED	-000\%	PT570T30
24V-DC, $4 \mathrm{CO}, 6 \mathrm{~A}$, gold plated	00000	PT580024
110V-DC, 4 CO, 6A, gold plated		PT580110
220V-DC, 4 CO, 6A, gold plated	-000\%	PT580220
24V-AC, $4 \mathrm{CO}, 6 \mathrm{~A}$, gold plated	00000	PT580524
$115 \mathrm{~V}-\mathrm{AC}, 4 \mathrm{CO}, 6 \mathrm{~A}$, gold plated		PT580615
230V-AC, $4 \mathrm{CO}, 6 \mathrm{~A}$, gold plated		PT580730
24 V -DC, $4 \mathrm{CO}, 6 \mathrm{~A}$, gold plated with LED		PT580L24
230V-AC, 4 CO, 6A, gold plated with LED	0000000	PT580T30
Plug-in Socket for PT Relays 4 Poles		
DIN rail mounted plug-in sockeef for PT5 relays, 14 pole, 6A (4 CO), with spring clamp terminals	-000-0)	PT7874P
Retaining clip for PT socket PT7874P	-000-0)	PT17021
Jumper link, 12A, for PT socket PT7874P	-000\%	PT170P1
Marking tag	-000-0)	YPT16040

Plug-in Socket for PT Relays, I/O - Logical Arrangement 4 Poles

DIN rail mounted plug-in socket for PT5 relays, 14-pole, 6A (4CO) with screw terminals	- -8008	PT78742
Retaining clip for PT socket PT7874P	-500-0,	PT17021
Jumper bar, 12A, for connection of up to 6 PT sockets YPT78...	-000-9,	PT170R6
Marking tag	$+5006$	YPT16040
Plug-in Socket for PT Relays 4 Poles, Conventional Model		
DIN rail mounted plug-in socket for PT2 relays, 8 pole, 12A (2 CO)	- $-\frac{0}{00}$	YPT78702
DIN rail mounted plug-in socket for PT3 relays, 11 pole, 10A (3 CO)	-00\%-0,	YPT78703
DIN rail mounted plug-in socket for PT5 relays, 14 pole, 6A (4CO)		YPT78704
DIN rail mounted plug-in socket for PT5 relays, 14 pole, 6A (4 CO) with protection diode	-00000]	YPT78110
Retaining clip	-500-9,	YPT16016
Retaining clip for PT socket PT78xx	$\begin{array}{lll} \hline-\infty 0 & -9 \\ \hline \end{array}$	PT17024
Jumper bar, 12A, for connection of up to 6 PT sockets YPT78...	$+\infty=0$	PT170R6
Marking tag	$+\infty 000$	YPT16040

Modules Matching Plug-in Socket for PT Relays

LED module, red, 6-24V AC/DC, EM07	-	YMLRA024
LED module, red, 6-24V DC, A1+, EM 18	- $-\frac{10}{0-6}$	YMLRD024-A
LED module, red, 6-24V DC, AI-, EM08	[-000-9,	YMLRD024
LED module, red, 110-230V AC, EM06	- -1×0	YMLRW230
LED module, green, 6-24V AC/DC, EM 11		YMLGA024
LED module, green 6-24V DC with protection diode, $\mathrm{Al} 1+$, EM 12	-000-0-0,	YMLGD024
LED module, green, 110-230V AC, EM 10		YMLGW230
Protection diode module 6-230V DC, Al+, EM09		YMFDG230
RC Network module 6-60V AC, EM02	[-0000,	YMRCW024
RC Network module 110-230V AC, EM03		YMRCW230
Varistor module, 24V-AC, EM04	$+\infty=-\infty$	YMVAW024
Varistor module 230V-AC, EM05	$+\infty=0$	YMVAW230

[^0]Plug-in Relays Schrack, Series MT

ת Schrack-Info

- $2 / 3$ poles $10 \mathrm{~A}, \mathrm{AC}$ or DC coil
- 2 or 3 CO
- Cadmium-free contact material
- Standard model with mechanical status indicator
- Optional electrical status indicator
- Test switch system: touch protection, lockable with lever integrated in the cap, front access test switch
- Multi-purpose use for industrial system and machine building

Dimensions (mm)

Plug-in Relays

- Plug-in Relays Schrack, Series MT

Rated Breaking Capacity \& Coil Operating Voltage Range

Rated Breaking Capacity \& Coil Operating Voltage Range

Technical Data
CONTACT DATA 10 A

Number of contacts and type		2 CO or 3 CO contacts
Contact style		Single contact
Rated current		10 A
Rated voltage/ max. switching voltage AC		$240 / 400 \mathrm{~V} \sim$
Limiting continuous current		10 A
Max. rated breaking capacity AC		2500 VA
Limiting making current, max. 20 ms		20 A
Contact material		$\mathrm{AgNi} 90 / 10, \mathrm{AgNi} 90 / 10$ hard gold plated
Minimal contact load		$12 \mathrm{~V} / 10 \mathrm{~mA}, 20 \mathrm{mV} / 1 \mathrm{~mA}$ hard gold plated
COIL DATA		
Rated voltage	DC coil	6... 220 V
	AC coil	6... 230 V ~
Rated power	DC coil	1.2 W
	AC coil	2.3 VA
Operative range, IEC 61810		2
Coil insulation system according to UL1446		Class 130 (B)
Operation-/ release voltage/ coil resistance at ambient temperature $23^{\circ} \mathrm{C}$	24 V DC coil	$18 \mathrm{~V} / 2.4 \mathrm{~V} / 475 \Omega \pm 10 \%$
	24 V AC coil	$19.2 \mathrm{~V} / 7.2 \mathrm{~V} / 86 \Omega \pm 10 \%$
	230 V AC coil	$184 \mathrm{~V} / 69 \mathrm{~V} / 8300 \Omega \pm 10 \%$

- Plug-in Relays Schrack, Series MT

DESCRIPTION	AVAILABLE	ORDER NO.
MT Relays 2 Poles		
12V-DC, 2 CO, 10A		MT221012
24V-DC, 2 CO, 10A	00000	MT221024
$12 \mathrm{~V}-\mathrm{AC}, 2 \mathrm{CO}, 10 \mathrm{~A}$	0×0	MT226012
24V-AC, 2 CO, 10A	0×0	MT226024
115V-AC, 2 CO, 10A	0×0	MT226115
$230 \mathrm{~V}-\mathrm{AC}, 2 \mathrm{CO}, 10 \mathrm{~A}$	0×0	MT226230
$230 \mathrm{~V}-\mathrm{AC}, 2 \mathrm{CO}, 10 \mathrm{~A}$ with LED		MT228230

Plug-in Socket for MT Relays 2 Poles

DIN rail mounted plug-in socket for MT2 relays, 8 pole, 10A (2 CO) with screw terminals, not compatible with function modules \quad YMR78701

MT Relays 3 Poles

12 V -DC, 3 CO, 10A		MT321012
24 V -DC, 3 CO, 10A	-600-0)	MT321024
$48 \mathrm{~V}-\mathrm{DC}, 3 \mathrm{CO}, 10 \mathrm{~A}$	-600-0,	MT321048
60V-DC, 3 CO, 10A	- -60	MT321060
24V-DC, 3 CO, 10A with protection diode	- $000-80$	MT3210C4
110V-DC, 3 CO, 10A	- -1000	MT321110
220V-DC, 3 CO, 10A	$+\infty=0$	MT321220
$24 \mathrm{~V}-\mathrm{DC}, 3 \mathrm{CO}, 10 \mathrm{~A}$ with LED	$+00 \div-\pi$	MT323024
48V-DC, 3 CO, 10A with LED	-000-0-0	MT323048
60V-DC, 3 CO, 10A	$+\infty=-\infty$	MT323060
$24 \mathrm{~V}-\mathrm{DC}, 3 \mathrm{CO}, 10 \mathrm{~A}$ with LED and protection diode	- -0.000	MT3230C4
110V-DC, 3 CO, 10A with LED	-mon	MT323110
220V-DC, 3 CO, 10A with LED		MT323220
12V-AC, 3 CO, 10A	-50-0)	MT326012
24V-AC, 3 CO, 10A		MT326024
$48 \mathrm{~V}-\mathrm{AC}, 3 \mathrm{CO}, 10 \mathrm{~A}$	$+\quad-\infty 0$	MT326048
60V-AC, 3 CO, 10A	- $-\cdots 000$	MT326060
$115 \mathrm{~V}-\mathrm{AC}, 3 \mathrm{CO}, 10 \mathrm{~A}$	$+\infty, \infty$	MT326115
230V-AC, 3 CO, 10A	[-000]	MT326230
$24 \mathrm{~V}-\mathrm{AC}, 3 \mathrm{CO}, 10 \mathrm{~A}$ with LED	$+\infty=-n$	MT328024
$115 \mathrm{~V}-\mathrm{AC}, 3 \mathrm{CO}, 10 \mathrm{~A}$ with LED	- -600	MT328115
$230 \mathrm{~V}-\mathrm{AC}, 3 \mathrm{CO}, 10 \mathrm{~A}$ with LED	- -6000	MT328230
24V-DC, 3 CO, 10A, gold plated	$\begin{array}{\|l\|l\|} \hline-000 & -0 \\ \hline \end{array}$	MT331024
110V-DC, 3 CO, 10A, gold plated	$+0,0-\infty$	MT331110
220V-DC, 3 CO, 10A, gold plated	$\begin{array}{lll} -\infty & 0-9 \\ \hline \end{array}$	MT331220
24V-DC, 3 CO, 10A, gold plated	$+\infty=\infty$	MT333024
24V-DC, 3 CO, 10A, gold plated	$\begin{array}{rrr} \hline-000 & 0-8 \\ \hline \end{array}$	MT3330C4
230V-AC, 3 CO, 10A, gold plated	$+\infty$	MT336230

Plug-in Socket for MT Relays 3 Poles

DIN rail mounted plug-in socket for MT3 relays and timer relays series ZR4, 11 pole, $10 \mathrm{~A}(3 \mathrm{CO})$, with screw terminals, not compatible with function modules

-80-9090	YMR78700
-800-9080	MT78740
$\begin{array}{lll} -50 & -0 \\ \hline \end{array}$	MTMLO024
-500-9,	MTMTOOAO
[-800-8,	MTMU0730
$+\infty 0 \%$	MTMZOW00
- -60	MTMFOWOO

RM732730

RM78705

Schrack-Info

RM2/3/7

- $2 / 3$ poles $10 / 16$ A, AC or DC coil
- Switching capacity up to 6000 VA
- Mechanical status indicator
- Test switch
- Plug-in or print versions, strap mounting or DIN rail mounting
- For elevator controls, mains adaptors

RM5 / 6

- $2 / 3$ poles $10 / 16$ A, AC or DC coil
- 2 NO or 3 NO
- 3 mm contact gap
- Test switch
- Plug-in or print versions, strap mounting or DIN rail mounting
- For mains adaptors, power supply units, pump control systems

RM8

- 2 poles $25 \mathrm{~A}, \mathrm{AC}$ or DC coil
- 2 CO
- Mechanical status indicator
- Test switch
- Strap mounting or DIN rail mounting
- For cleaning machines, heating/cooling equipment

RMD

- 1 pole 30 A, AC or DC coil
- 1 NO or $1 \mathrm{NO} \& 1 \mathrm{NC}$
- Switching capacity up to 7500 VA
- Test switch
- Strap mounting
- For battery chargers, heating controls

Plug-in Relays Schrack, Series RM
Dimensions (mm)

Dimensions

A	Cover without lug, plug-in connectors for plug-in socket
B	PCB version
C	Cap with mounting bracket, Faston 250 (187 possible)
D1	Cap with DIN snap mechanism (only Faston 250)
D2	Lying
D3	Standing

Plug-in Relays

- Plug-in Relays Schrack, Series RM
- Circuit Diagrams

Circuit Diagrams

\#1.1	2 CO
$\# 1.2$	3 CO
$\# 2.1$	2 NO
\#2.2	3 NO
\#3	2 CO
$\# 4$	$1 \mathrm{NO}, \mathrm{RMD}$

\square Plug-in Relays Schrack, Series RM
Rated Breaking Capacity

Rated Breaking Capacity

\mathbf{A}	RM2/3/7 Max. DC rated breaking capacity
\mathbf{B}	RM5/6 Max. DC rated breaking capacity
\mathbf{C}	RM8 Max. DC rated breaking capacity
\mathbf{D}	RMD Max. DC rated breaking capacity
$\mathbf{\# 1}$	1 contact
$\mathbf{\# 2}$	2 contacts in series
$\mathbf{\# 3}$	3 contacts in series
$\mathbf{\# 4}$	Resistive load
\mathbf{U}	DC voltage in $[\mathrm{V}]$
$\mathbf{1}$	DC current in $[\mathrm{A}]$

Plug-in Relays

- Plug-in Relays Schrack, Series RM

- Technical Data RM2/3/7

Technical Data RM5/6/8

CONTACT DATA		RM5	RM6	RM8
Number of contacts and type		2 NO	3 NO	2 CO
Contact style		Single contact		
Contact gap		3 mm		-
Rated current		16 A	10 A	25 A
Rated voltage/ max. switching voltage AC		400 / 440 V	230 / 400 V	400 / 400 V
Max. rated breaking capacity AC		6000 VA	3800 VA	6000 VA
Limiting making current, max. 20 ms		30 A	25 A	60 A
Contact material		AgCdO		$\mathrm{AgCdO}, \mathrm{AgNi} 90 / 10$
Minimal contact load		24 V DC / 100 mA		
COIL DATA				
Rated voltage	DC coil	6...220 V		
	AC coil	$6 . . .400 \mathrm{~V}$		
Rated power	DC coil	1.7 W		1.2 W
	AC coil	2.7 VA		2.7 VA
Operative range, IEC 61810		2		
Coil insulation system according to UL1446		Class 130 (B)		
Operation-/ release voltage/ coil resistance	24 V DC coil	$18 \mathrm{~V} / 2.4 \mathrm{~V} / 345 \Omega \pm 10 \%$		$18 \mathrm{~V} / 2.4 \mathrm{~V} / 475 \Omega \pm 10 \%$
at ambient temperature $23{ }^{\circ} \mathrm{C}$	230 V AC coil	$184 \mathrm{~V} / 69 \mathrm{~V} / 7500 \Omega \pm 10 \%$		

- Technical Data RMD

CONTACT DATA		RMD
Number of contacts and type		1 NO
Contact style		Single bridging contact
Rated current		30 A
Rated voltage/ max. switching voltage AC		400 / 440 V
Max. rated breaking capacity AC		7500 VA
Limiting making current, max. 20 ms		60 A
Contact material		AgCdO, AgNi90/10
Minimal contact load		24 V DC / 100 mA
COIL DATA		
Rated voltage	DC coil	6... 220 V
	AC coil	$6 . .400 \mathrm{~V}$
Rated power	DC coil	1.2 W
	AC coil	2.7 VA
Operative range, IEC 61810		2
Coil insulation system according to UL1446		Class 130 (B)
Operation-/ release voltage/ coil resistance	24 V DC coil	$18 \mathrm{~V} / 2.4 \mathrm{~V} / 475 \Omega \pm 10 \%$
at ambient temperature $23{ }^{\circ} \mathrm{C}$	230 V AC coil	$184 \mathrm{~V} / 69 \mathrm{~V} / 7500 \Omega \pm 10 \%$

- Plug-in Relays Schrack, Series RM

DESCRIPTION	AVAILABLE	ORDER NO.
RM Relays 2 Poles		
24V-DC, 2 CO, 25A	-000-0-6)	RM835024
24V-DC, 2 CO, 25A	-000-9-9	RM838024
24V-DC, 2 CO, 25A	-600-0]	RM839024
24V-DC, 1 NO, 30A	$+\infty 0 \div 0$	RMD05024
230V-AC, $2 \mathrm{CO}, 25 \mathrm{~A}$	- -0×0	RM805730
230V-AC, $2 \mathrm{CO}, 25 \mathrm{~A}$	$+60 \div-\infty$	RM8357305E
230V-AC, $2 \mathrm{CO}, 25 \mathrm{~A}$	-600-0]	RM809730
230V-AC, 2 CO, 25A	- -2000	RM839730
RM Relays 3 Poles		
24V-DC, 3 CO, 10A	-600-6-9,	RM332024-D
230V-AC, 3 CO, 10A	- $-0-0$	RM3327305E
24 V -DC, 3 NO, 10A	-600-9,	RM632024-A
24V-DC, 3 CO, 16A	-000-0)	RM702024-C
12V-DC, 3 CO, 16A	$+\infty=0$	RM732012-C
24V-DC, 3 CO, 16A	-000-0-6,	RM732024-C
60V-DC, 3 CO, 16A	-800-0)	RM732060
$24 \mathrm{~V}-\mathrm{AC}, 3 \mathrm{CO}, 16 \mathrm{~A}$	- $-0-\infty$	RM732524-C
230V-AC, 3 CO, 16A	$\begin{aligned} &-\infty-\infty \\ & \hline \end{aligned}$	RM732730
$400 \mathrm{~V}-\mathrm{AC}, 3 \mathrm{CO}, 16 \mathrm{~A}$	$\begin{array}{r} -000 \\ \hline 000 \\ \hline \end{array}$	RM732900
230V-AC, 3 CO, 16A	$+50$	RM7357305E
24V-DC, 3 CO, 16A	--00-9,	RM738024-C
230V-AC, 3 CO, 16A	$+\infty 0$	RM738730-C
230V-AC, 3 CO, 16A	- -000	RM7397305E
Plug-in Socket for RM Relays, up to 16 A, for RMxx $\mathbf{2 x x x}$		
DIN rail mounted plug-in socket, 11 pole, up to 16A, for Faston 187	-600-9	RM78705

DIN rail mounted plug-in socket, 11 pole, up to 16A, for Faston 187

Relay Sockets \& Sets

Relay Sockets and Sets Schrack, Series SNR

D Dimensions (mm)

Schrack-Info

- Relay package consisting of a relay and a DIN rail socket
- 1 CO 6 A rated current
- Safe disconnection compliant with VDE 0160 in combination with socket YRT78626
- Module width only 6.2 mm
- Narrow component width allows high component density and tight-packed functionality on the DIN rail
- Complies with the 2011/65/EU RoHS Directive
- Protection diode

\qquad

DESCRIPTION	AVAILABLE	ORDER NO.
12V-DC, 1 CO, 6A with socket	-000-9,	ST3P3LB2
24V-DC, 1 CO, 6A with socket	-000-0	ST3P3LC4
24V-DC, 1 CO, 6A with socket	-000-0,	ST3P2LC4
230V-AC/DC, 1 CO, 6A with socket	-000-9,	ST3P3TP0
24V-DC, 1 CO, 6A with socket	-	ST4P3LC4
24V-DC, 1 CO, 6A with socket, htv		ST4P2LC4
230V-AC/DC, 1 CO, 6A with socket	[-000-9000	ST4P3TP0
DIN rail mounted plug-in socket for SNR relays, 24V-DC, 6A, incl. protection diode, with screw terminals	- -0×0	ST3FLC4
SNR jumper bar, red, 500 mm	- -60	ST37001
SNR jumper bar, blue, 500 mm	-000-0	ST37002
SNR jumper bar, grey, 500 mm	- -8000	ST37003
Marking plate, 1 plate $=100 \mathrm{pcs}$.	-000-9,	ST37040
Separator plate	$+\infty 0-\infty$	ST36040
Connection bridge 20 pole for YSN90020		YSN90020

Relay Sockets for Schrack, Series RT

RT7872P

YRT78624

Schrack-Info
RT7872P

- Screwless terminals
- Solid wire for toolless mounting
- Twin terminals for each connection
- Cross-connector bridges to establish a connection
- Open coil circuit for active modules
- Inputs and outputs separated

RT78725, YRT78624, YRT78626

- Easy changing of the relay even if tightly packed
- High-grade terminals preventing incorrect insertion
- Captive terminal screws

Dimensions

A	Label
B	Relay
C	Bracket
D	Module

Relay Sockets \& Sets

Relay Sockets for Schrack, Series RT
Technical Data

For stranded conductors with single wires of 0.05 mm or less, the used of ferrules is recommended. When using stranded conductors without ferrules, the terminal must be opened to insert the conductor.
*For 1 pole relays (16 A) the relay terminals 11-21, 12-22 and 14-24 have to be bridged!

Mounting Instructions

RT7872P

Relay Sockets \& Sets

Relay Sockets for Schrack, Series RT

DESCRIPTION	AVAILABLE	ORDER NO.
Jumper link for connection of RT7872P	- 0×0 -	RT170P 1
DIN rail mounted plug-in socket for RT2x, RT3x, RT4x, XT, RP4x relays, pinning 5mm, max. 16A, with spring clamp terminals		RT7872P
DIN rail mounted plug-in socket for RT1x relays, pinning 3.5 mm , max. $12 \mathrm{~A}, 1 / \mathrm{O}$ - logical arrangement, with screw terminals	-000-m	YRT78624
DIN rail mounted plug-in socket for XT, RT2x, RT3x, RT4x relays, pinning 5 mm , max. 12A, $1 / \mathrm{O}$ - logical arrangement, with screw terminals	$+\infty 00$	YRT78626
DIN rail mounted plug-in socket for RT2x, RT3x, RT4x relays, pinning 5mm, max. 16A, conventional arrangement, with screw terminals	$+\infty=\sigma$	RT78725
Jumper bar for connection of up to 8 RT-sockets		RT170R8
Retaining clip for RT relays with ejection function	-000-n	RT17017
Marking tag (for YRT sockets YRT78624 and YRT78626)		YRT 16040
LED module, red, 6-24V AC/DC, EM07		YMLRA024
LED module, red, 6-24V DC, A1+, EM 18		YMLRD024-A
LED module, red, 6-24V DC, A1-, EM08	-000-0	YMLRD024
LED module, red, 110-230V AC, EM06	- -0×0	YMLRW230
LED module, green, 6-24V AC/DC, EM 11		YMLGA024
LED module, green 6-24V DC with protection diode, A1+, EM 12		YMLGD024
LED module, green, 110-230V AC, EM 10	$+500$	YMLGW230
Protection diode module 6-230V DC, A1+, EM09	[-000]	YMFDG230
RC Network module 6-60V AC, EM02	$+\infty=0$	YMRCW024
RC Network module 110-230V AC, EM03	$+\infty=0$	YMRCW230
Varistor module, 24V-AC, EM04		YMVAW024
Varistor module 230V-AC, EM05	4	YMVAW230

Relay Sockets for Schrack, Series XT

- Screwless terminals
- Solid wire for toolless mounting
- Twin terminals for each connection
- Cross-connector bridges to establish a connection
- Open coil circuit for active modules
- Inputs and outputs separated

RT78725, YRT78624, YRT78626

- Easy changing of the relay even if tightly packed
- High-grade terminals preventing incorrect insertion
- Captive terminal screws
- Dimensions (mm)

Dimensions

A	Label
B	Relay
C	Bracket
D	Module

Relay Sockets for Schrack, Series XT

- Technical Data

For stranded conductors with single wires of 0.05 mm or less, the used of ferrules is recommended. When using stranded conductors without ferrules, the terminal must be opened to insert the
conductor.
*For 1 pole relays (16 A) the relay terminals $11-21,12-22$ and 14-24 have to be bridged!

Mounting Instructions

RT7872P

Relay Sockets \& Sets

Relay Sockets for Schrack, Series XT

Relay Sockets for S-Relay, Series RS4

Schrack-Info

- Socket for S-RELAY Series 4
- Suitable for mounting in electrical enclosures or for DIN rail mounting
- High-grade terminals preventing incorrect insertion
- Captive terminal screws

Dimensions (mm)

Mounting of Accessories
Dimensions \& Mounting of Accessories

A	Standard socket
B	Socket with retainer/retractor clip
$\mathbf{1}$	Installation of retainer/ retractor clip, module and description plate
$\mathbf{2}$	Retainer/retractor clip usage
\mathbf{C}	Description plate
\mathbf{D}	Retainer/ retractor clip
\mathbf{E}	Module

Relay Sockets \& Sets

Relay Sockets for S-Relay, Series RS4

Circuit Diagram	
\#1	
$\# 1.1$	Terminals
$\# 1.2$	NO contacts
$\# 1.3$	NC contacts
$\# 1.4$	Coil

Technical Data
TECHNICAL DATA

Relay Sockets for Schrack, Series PT

YPT78703

PT78742

- Socket with separated control and load connectors
- High-grade terminals preventing incorrect insertion
- Captive terminal screws
- Double A2 for easy through-wiring

YPT78702, YPT78703, YPT78704, YPT78110

- High-grade terminals preventing incorrect insertion
- Captive terminal screws

PT78604

- Print socket, 4 poles, 6 A

Relay Sockets \& Sets

Relay Sockets for Schrack, Series PT

- Dimensions (mm)

Dimensions

A	Relay
\mathbf{B}	Bracket
\mathbf{C}	Module
\mathbf{D}	Label
\mathbf{E}	Jumper bar
\mathbf{F}	Opening access
\mathbf{G}	Conductor opening

Reduction Curves

Reduction Curves

\#1	Tight package
\mathbf{I}	Load current in $[\mathrm{A}]$
$\boldsymbol{\vartheta}$	Ambient temperature in $\left[{ }^{\circ} \mathrm{C}\right]$

Relay Sockets for Schrack, Series PT

- Technical Data

PT 7874P		
		4 POLE
Rated current		6 A
Rated voltage/ max. switching voltage		$240 \mathrm{~V} \sim$
Limiting continuous current		See reduction curve
Dielectric strength	Coil-contact set	$2500 \mathrm{~V}_{\text {ms }}$
	Open contact	$1200 \mathrm{~V}_{\text {ms }}$
	Adjacent contacts	$2000 \mathrm{~V}_{\text {ms }}$
Clearance/ creepage	Coil-contact circuit	$\geq 4 / 4 \mathrm{~mm}$
	Adjacent contact circuits	$\geq 1.8 / 3.5 \mathrm{~mm}$
Insulation to IEC 60664-1		
Type of insulation	Coil-contact set	Basic
	Open contact	Functional
	Adjacent contact	Basic
Rated insulation voltage		250 V
Pollution degree		2*
Overvoltage category		III
Ambient temperature	For mounting/handling	$-25 . . .+70^{\circ} \mathrm{C}$
	In operation	$-40 . .+70^{\circ} \mathrm{C}$
Terminals		Screw less terminal
Wire stripping length		12 mm
Terminal capacity	Solid wire	$1 \times 0.75 / 1 / 1.5 \mathrm{~mm}^{2}, 2 \times 0.75 / 1 \mathrm{~mm}^{2}$
	With standard insulation (no reinforced insulation)	$2 \times 1.5 \mathrm{~mm}^{2}$
	Stranded wire without ferrule	$1 \times 0.75 / 1 / 1.5 \mathrm{~mm}^{2}, 2 \times 0.75 / 1 \mathrm{~mm}^{2}$
	Without ferrule, with standard insulation	$2 \times 1.5 \mathrm{~mm}^{2}$
	With ferrule	$1 \times 0.75 / 1 \mathrm{~mm}^{2}, 2 \times 0.75 \mathrm{~mm}^{2}$
	With ferrule, without insulation or insulation at least 18 mm long	$1 \times 1.5 \mathrm{~mm}^{2}$

*With inserted relay pollution degree 1 in region of contact pins/ socket inlets.

PT 78742

	4 POLE
Rated current	6 A
Rated voltage/ max. switching voltage	$240 \mathrm{~V} \sim$
Limiting continuous current	See reduction curve
Dielectric strength Coil-contact set Open contact Adjacent contacts	$\begin{aligned} & 2500 \mathrm{~V}_{\mathrm{rms}} \\ & 1200 \mathrm{~V}_{\mathrm{rm}} \\ & 2000 \mathrm{~V}_{\mathrm{rms}} \end{aligned}$
Clearance/ creepage Coil-contact circuit Adjacent contact circuits	$\begin{aligned} & \geq 4 / 4 \mathrm{~mm} \\ & \geq 1.8 / 3.5 \mathrm{~mm} \\ & \hline \end{aligned}$
Insulation to IEC 60664-1 Type of insulation Coil-contact set Open contact Adjacent contact	Basic Functional Basic
Rated insulation voltage	250 V
Pollution degree	2*
Overvoltage category	III
Ambient temperature	$-40 . . .+70^{\circ} \mathrm{C}$
Terminals	Screw terminal
Terminal torque according to IEC 61984 Max.	$\begin{aligned} & 0.5 \mathrm{Nm} \\ & 0.7 \mathrm{Nm} \end{aligned}$
Terminal capacity Copper wire Stranded wire With ferrule (DIN 46228/1)	$\begin{aligned} & 2 \times 2.5 \mathrm{~mm}^{2} \\ & 2 \times 2.5 \mathrm{~mm}^{2} \\ & 2 \times 1.5 \mathrm{~mm}^{2} \end{aligned}$

*With inserted relay pollution degree 1 in region of contact pins/ socket inlets.

Relay Sockets \& Sets

Relay Sockets for Schrack, Series PT

- Technical Data

YPT 78702, YPT 78703, YPT 78704, YPT 78110				
		2 POLE	3 POLE	4 POLE
Rated current		12 A	10 A	6 A
Rated voltage/ max. switching voltage AC		$250 \mathrm{~V} \sim$		
Limiting continuous current		See reduction curve		
Dielectric strength	Coil-contact set	$\begin{aligned} & 2500 \mathrm{~V}_{\mathrm{rms}} \\ & 1200 \mathrm{~V}_{\mathrm{rms}} \\ & 2500 \mathrm{~V}_{\mathrm{ms}} \end{aligned}$		
	Open contact			
	Adjacent contacts			
Clearance/ creepage	Coil-contact circuit	$\geq 4 / 4 \mathrm{~mm}$		
	Adjacent contact circuits	$\geq 3.5 / 9.5 \mathrm{~mm}$	$\geq 2.6 / 3.5 \mathrm{~mm}$	$\geq 1.8 / 3.5 \mathrm{~mm}$
Insulation to IEC 60664-1				
Type of insulation	Coil-contact set			
	Open contact		Functional	
	Adjacent contact	Basic		Functional
Rated insulation voltage		250 V		
Pollution degree		2		
Overvoltage category		III		
Ambient temperature		$-40 . . .+70^{\circ} \mathrm{C}$		
Terminals		Screw terminals		
Terminal torque according to IEC 61984		0.5 Nm		
	Max.	0.7 Nm		
Terminal capacity	Copper wire	$2 \times 2.5 \mathrm{~mm}^{2}$		
	Stranded wire	$2 \times 2.5 \mathrm{~mm}^{2}$		
	With ferrule (DIN 46228/1)	$2 \times 1.5 \mathrm{~mm}^{2}$		

PT 78604

	4 POLE
Rated current	6 A
Rated voltage/ max. switching voltage AC	250 V
Limiting continuous current	See reduction curve
Dielectric strength Coil-contact set Open contact Adjacent contacts	$\begin{aligned} & 2500 \mathrm{~V}_{\mathrm{rms}} \\ & 1200 \mathrm{~V}_{\mathrm{rm}} \\ & 2000 \mathrm{~V}_{\mathrm{ms}} \end{aligned}$
Clearance/ creepage Coil-contact circuit Adjacent contact circuits	$\begin{aligned} & \geq 4 / 4 \mathrm{~mm} \\ & \geq 1.8 / 3.5 \mathrm{~mm} \\ & \hline \end{aligned}$
Insulation to IEC 60664-1 Type of insulation Coil-contact set Open contact Adjacent contact	Basic Functional Functional
Rated insulation voltage	250 V
Pollution degree	2
Overvoltage category	III
Ambient temperature	$-40 \ldots+80^{\circ} \mathrm{C}$
Terminals	Screw terminals
Terminal torque according to IEC 61984 Max.	$\begin{aligned} & 0.5 \mathrm{Nm} \\ & 0.7 \mathrm{Nm} \end{aligned}$
Terminal capacity Copper wire Stranded wire With ferrule (DIN 46228/1)	$\begin{aligned} & 2 \times 2.5 \mathrm{~mm}^{2} \\ & 2 \times 2.5 \mathrm{~mm}^{2} \\ & 2 \times 1.5 \mathrm{~mm}^{2} \end{aligned}$

Relay Sockets \& Sets

Relay Sockets for Schrack, Series PT

DESCRIPTION	AVAILABLE	ORDER NO.
DIN rail mounted plug-in socket for PT5 relays, 14 pole, 6A (4CO), with spring clamp terminals	-000- 0 -	PT7874P
Jumper link, 12A, for PT socket PT7874P	-000000	PT170P1
DIN rail mounted plug-in socket for PT5 relays, 14-pole, 6A (4 CO) with screw terminals	-000-m	PT78742
Retaining clip for PT socket PT7874P	-000-9,	PT17021
Marking tag	-00\%-n	YPT16040
DIN rail mounted plug-in socket for PT2 relays, 8 pole, 12A (2 CO)	-000-0,	YPT78702
DIN rail mounted plug-in socket for PT3 relays, 11 pole, 10A (3 CO)	$+\infty=0$	YPT78703
DIN rail mounted plug-in socket for PT5 relays, 14 pole, 6A (4 CO)	- $-\cdots \cdots$	YPT78704
DIN rail mounted plug-in socket for PT5 relays, 14 pole, $6 \mathrm{~A}(4 \mathrm{CO})$ with protection diode	-000-9,	YPT78110
Retaining clip	-000-9,	YPT16016
Retaining clip for PT socket PT78xx	-000-c,	PT17024
Jumper bar, 12A, for connection of up to 6 PT sockets YPT78...	-000-9,	PT170R6
PCB socket for PT5 relays, 4 pole, 6A	-000-9,	PT78604
Retaining clip metal	- $-\cdots \times 0$	PT28800
Retaining clip metal for PCB socket	- -0×0	PT28802
Marking tag for socket PT787...	-000-9,	PT17040
LED module, red, 6-24V AC/DC, EM07	$+\infty, \infty$	YMLRA024
LED module, red, 6-24V DC, A1+, EM 18	- $-\cdots \times 0$	YMLRD024-A
LED module, red, 6-24V DC, A1-, EM08	- $\times 0$ -	YMLRD024
LED module, red, 110-230V AC, EM06	-000-9,	YMLRW230
LED module, green, 6-24V AC/DC, EM 11	- +0000	YMLGA024
LED module, green 6-24V DC with protection diode, A1+, EM 12	$+\infty=-6$	YMLGD024
LED module, green, 110-230V AC, EM 10	$+\infty=0$	YMLGW230
Protection diode module 6-230V DC, Al+, EM09	-000-9,	YMFDG230
RC Network module 6-60V AC, EM02	$+\infty \times \infty$	YMRCW024
RC Network module 110-230V AC, EM03		YMRCW230
Varistor module, 24V-AC, EM04	$\begin{array}{\|ccc} \hline-000 & -\infty \\ \hline \end{array}$	YMVAW024
Varistor module 230V-AC, EM05	-000-0,	YMVAW230

Relay Sockets \& Sets

Relay Sockets for Schrack, Series MT

MTMFOWOO

Schrack-Info

- DIN rail snap mounting
- Screw mounting with centering screw
- Pozidrive screws with lift terminals
- Logical arrangement of I/O terminals
- White labelling field

Dimensions (mm)

Relay Sockets for Schrack, Series MT
Circuit Diagrams
MMR78701

Time Module Functionalities

A	$\begin{aligned} & \mathrm{U} / \mathrm{t} \square \square \mathrm{~L} \\ & \mathrm{R} \longrightarrow \square \end{aligned}$
B	\square
C	
D	
E	
F	$\begin{aligned} & \mathrm{U} / \mathrm{t} \square \mathrm{~T} \\ & \mathrm{R} \end{aligned}$
G	$\begin{aligned} & \mathrm{U} / \mathrm{t}+\boldsymbol{+} \mathrm{C}+\boldsymbol{+} \mathrm{C} \\ & \mathrm{R} \end{aligned}$
H	$\begin{aligned} & \mathrm{U} / \mathrm{t}+\boldsymbol{\square} \mathrm{C} \\ & \mathrm{R} \end{aligned}$

Circuit Diagrams \& Time Module Functionalities
\qquad

A	Response delayed MTMZOW00, MTMFOW00
B	Reset delayed MTMFOW00
C	Single shot leading edge with pulse control MTMFOW00
D	Single shot trailing edge MTMFOW00
E	Response delayed with control contact MTMFOW00
F	Single shot leading edge MTMFOW00
G	Flashing pause starting MTMFOW00
H	Flashing pulse starting MTMFOW00

Relay Sockets \& Sets

Relay Sockets for Schrack, Series MT

- Technical Data

Function Modules For Socket MT78740

Rated voltage	$24 \ldots 240 \mathrm{~V} \mathrm{DC} / \mathrm{AC}$
Mains frequency	$48 \ldots 63 \mathrm{~Hz}$
Repeat accuracy	$\pm 0.5 \%$
Repeatability	$\leq 0.5 \%$ or 5 ms
Temperature influence	$\leq 0.1 \%$ pro ${ }^{\circ} \mathrm{C}$
Time ranges switchable	$0.05 \mathrm{~s} . .240 \mathrm{~h} \mathrm{in} 8$ ranges
Ambient temperature	$-25 \ldots+55^{\circ} \mathrm{C}$

Relay Sockets for Schrack, Serie RM (RMxx2xxx)

Schrack-Info

- $2 / 3$ poles $10 / 16 \mathrm{~A}$
- RM socket for RMxx2x types (Faston 187):
RM332, RM632, RM732

Dimensions (mm)

Technical data

Rated current		16 A
Rated voltage		250 V
Dielectric strength	Coil-contact set	$2500 \mathrm{~V}_{\text {ms }}$
	Open contact	$1500 \mathrm{~V}_{\mathrm{ms}}$
	Adjacent contact	$2500 \mathrm{~V}_{\text {ms }}$
Clearance/ creepage coil-contact circuit		$\geq 4.0 / 14.9 \mathrm{~mm}$
Insulation to IEC 60664-1		
Type of insulation	Coil-contact set	Basic
	Open contact	Functional
	Adjacent contact	Basic
Rated insulation voltage		250 V
Pollution degree		2
Overvoltage category		III
Ambient temperature		$-40 . . .+40^{\circ} \mathrm{C}$
Terminals		Screw terminals
Terminal torque according to IEC 61984		0.8 Nm
	Max.	1.2 Nm
Terminal capacity	Copper wire	$2 \times 2.5 \mathrm{~mm}^{2}$
	Stranded wire	$2 \times 2.5 \mathrm{~mm}^{2}$
	With ferrule (DIN 46228/1)	$2 \times 1.5 \mathrm{~mm}^{2}$

DESCRIPTION	AVAILABLE	ORDER NO.
DIN rail mounted plug-in socket, 11 pole, up to 16A, for Faston 187	$-\infty 000$	RM78705
Retaining Clip	RM28802	

Relay Sockets \& Sets

Print Relay Sockets for Schrack, Series RP5

Schrack-Info

- Print socket for 2.5 mm Pinning
- Matches Relay Series RP5

Dimensions (mm)

Technical Data

Rated current		12 A
Rated voltage/ max. switching voltage AC		$240 / 400 \mathrm{~V} \sim$
Dielectric strength	Coil-contact set	$4000 \mathrm{~V}_{\text {ms }}$
Clearance/ creepage	Coil-contact circuit	$\geq 4 / 4 \mathrm{~mm}$
Insulation to IEC 60664-1		
Type of insulation	Coil-contact set	Basic
	Open contact	Functional
Rated insulation voltage		250 V
Pollution degree		2
Overvoltage category		III
Ambient temperature		$-40 . . .+80^{\circ} \mathrm{C}$
Degree of protection DIN 40050		IP20
Terminals		PCB
Insertion cycles		A (10)
Max. insertion force total		100 N
Mounting distance		Tight package
Resistance to soldering heat		$270{ }^{\circ} \mathrm{C} / 10 \mathrm{~s}$

DESCRIPTION	AVAILABLE
PCB socket for RP5 relays with 2.5mm pinning	ORDER NO.
Bracket for PCB socket series RP5	RP78600

Print Relay Sockets for Schrack, Series RT

- Print socket for 3.5 and 5 mm Pinning
- Matches Relay Series RT

Dimensions (mm)

Relay Sockets \& Sets

Print Relay Sockets for Schrack, Series RT

Reduction Curves

Reduction Curves

- Technical Data

RP 78601, RP 78602

Print Relay Sockets for PT Relays

Schrack-Info

- Print socket, 4 poles, 6 A

Dimensions (mm)

Technical Data

	4 POLE
Rated current	6 A
Rated voltage/ max. switching voltage AC	$250 \mathrm{~V} \sim$
Limiting continuous current	See reduction curve
Dielectric strength Coil/contact set Open contact Adjacent contacts	$\begin{aligned} & 2500 \mathrm{~V}_{\mathrm{rms}} \\ & 1200 \mathrm{~V}_{\mathrm{rms}} \\ & 2000 \mathrm{~V}_{\mathrm{rms}} \end{aligned}$
Clearance/ creepage Coil contact circuit Adjacent contact circuits	$\begin{aligned} & \geq 4 / 4 \mathrm{~mm} \\ & \geq 1.8 / 3.5 \mathrm{~mm} \\ & \hline \end{aligned}$
Insulation to IEC 60664-1 Type of insulation Coil-contact set Open contact Adjacent contact	Basic Functional Functional
Rated insulation voltage	250 V
Pollution degree	2
Overvoltage category	III
Ambient temperature	$-40 \ldots+80^{\circ} \mathrm{C}$
Terminals	Screw terminals
Terminal torque accrding to IEC 61984 Max.	$\begin{aligned} & 0.5 \mathrm{Nm} \\ & 0.7 \mathrm{Nm} \end{aligned}$
Terminal capacity Copper wire Stranded wire With ferrule (DIN 46228/1)	$\begin{aligned} & 2 \times 2.5 \mathrm{~mm}^{2} \\ & 2 \times 2.5 \mathrm{~mm}^{2} \\ & 2 \times 1.5 \mathrm{~mm}^{2} \end{aligned}$

DESCRIPTION	AVAILABLE	ORDER NO.
PCB socket for PT5 relays, 4 pole, 6 A	PT78604	
Retaining clip metal for PCB socket	-000	

Print Relays Schrack, Series PE

Schrack-Info

- $1 \mathrm{CO}, 5 \mathrm{~A}$
- Coil 5 up to 24 V DC
- 2.5 mm Pinning
- Low component height of 10 mm
- Coil power rating: 200 mW
- Cadmium-free contact material
- Ambient temperature $85^{\circ} \mathrm{C}$
- For industrial equipment electronics, whiteware, battery powered devices

Dimensions (mm)

Rated Breaking Capacity, Electrical Service Life \& Coil Operating Voltage Range

Rated Breaking Capacity, Electrical Service Life \& Coil Operating Voltage Range

\mathbf{A}	Max. DC rated breaking capacity
\mathbf{B}	Electrical endurance
\mathbf{C}	Coil operating range DC
$\mathbf{\# 1}$	Resistive load
\#2	250 V AC resistive load
\#3	U $_{\text {rtd }}$ Rated coil voltage
\mathbf{I}	DC current in $[\mathrm{A}]$
$\mathbf{I 1}$	Switching current $[\mathrm{A}]$
\mathbf{U}	DC voltage in $[\mathrm{V}]$
$\mathbf{U} / \mathbf{U}_{\text {rtd }}$	Coil voltage in $[\mathrm{V}]$
\mathbf{Z}	Cycles
\boldsymbol{v}	Ambient temperature in $\left[{ }^{\circ} \mathrm{C}\right]$

- Print Relays Schrack, Series PE
- Technical Data

CONTACT DATA

Number of contacts and type		1 CO contact		
Rated current		5 A		
Rated voltage/ max. switching voltage AC		250 / 400 V		
Max. rated breaking capacity AC		1250 V		
Contact material		AgNi 90/1		
Frequency of operation	With Load	360 ops/h		
	Without Load	$72000 \mathrm{ops} / \mathrm{h}$		
Operate release time				
Bounce time		$\text { typ. } 4 / 6 \text { m }$		
COIL DATA				
Operative range, IEC 61810		2		
INSULATION DATA				
Initial dielectric strength	Open contacts	$\begin{aligned} & 1000 \mathrm{~V}_{\mathrm{rms}} \\ & 4000 \mathrm{~V}_{\mathrm{rms}} \end{aligned}$		
	Conatct and coil			
Initial insulation resistance	Open contact set	$>10 \times 10^{9} \Omega$		
Clearance/ creepage	Contact and coil	$\geq 3.2 / 4 \mathrm{~mm}$		
Ambient temperature		$-40 \ldots+85{ }^{\circ} \mathrm{C}$		
DESCRIPTION			AVAILABLE	ORDER NO.
5V-DC, 1 CO, 5A				PE014005
12V-DC, 1 CO, 5A				PE014012
24V-DC, 1 CO, 5A				PE014024

Print Relays

Print Relays Schrack, Series RE

- Schrack-Info
- 1 NO, 6 A
- Coil 5 up to 24 V DC
- PCB area $200 \mathrm{~mm}^{2}$
- Optimised height of 10.6 mm
- Coil power rating: 200 mW
- Wash proof
- For programmable controls, timer relays, temperature controllers, interface boards, whiteware

Dimensions (mm)

Rated Breaking Capacity, Electrical Service Life \& Coil Operating Voltage Range

Rated Breaking Capacity, Electrical Service Life \& Coil Operating Voltage Range

A	Max. DC rated breaking capacity
B	Electrical endurance
C	Coil operating range DC
\#1	Resistive load
\#2	250 V AC resistive load
\#3	Recommended voltage range
\mathbf{I}	DC current in $[\mathrm{A}]$
$\mathbf{I I}$	Switching current $[\mathrm{A}]$
\mathbf{U}	DC voltage in $[\mathrm{V}]$
$\mathbf{U} / \mathbf{U}_{\text {trd }}$	Coil voltage in $[\mathrm{V}]$
\mathbf{Z}	Cycles
\boldsymbol{U}	Ambient temperature in $\left[{ }^{\circ} \mathrm{C}\right]$

- Print Relays Schrack, Series RE
- Technical Data

CONTACT DATA

Print Relays

Print Relays Schrack, Series RP

- 1 pole $8 / 16 \mathrm{~A}$
- 1 CO
- Pinning $3.5 \mathrm{~mm}(8 \mathrm{~A})$ or $5 \mathrm{~mm}(16 \mathrm{~A})$
- For mains adaptors, household appliances, heating controls, cabling and wiring installations

RPII/2

- 2 poles 8 A
- 1 CO
- Pinning 5 mm
- For UPS, household appliances

RP Power PCB Relay Cards E

- Horizontal or vertical design
- 1 pole 8 A
- 1 CO
- Wash proof
- For I/O modules, heating controls, time switches

RP Overview

Relais	Number of CO contacts	Rated current [A]	Coil		Pinning [mm]	Contact material	RPII/1	RPII/2	RP Relay Cards E Vertical	RP Relay Cards E Horizontal
RP310012-A	1	16	DC	12 V	5	AgCdO	X			
RP310024-A	1	16	DC	24 V	5	AgCdO	X			
RP418024-A	1	8	DC	24 V	3.5	AgCdO	X			
RP710024-A	1	16	DC	24 V	5	AgCdO	X			
RP420012-B	2	8	DC	12 V	5	AgCdO		X		
RP420024-B	2	8	DC	24 V	5	AgCdO		X		
RP420524-B	2	8	AC	24 V	5	AgCdO		X		
RP420730-B	2	8	AC	230 V	5	AgCdO		X		
RP421024-B	2	8	DC	24 V	5	AgNi0. 15		X		
RP421048-B	2	8	DC	48 V	5	AgNi0. 15		X		
RP421730-B	2	8	AC	230 V	5	AgNi0. 15		X		
RP820024-A	2	8	DC	24 V	5	AgCdO		X		
RP510012-E	1	8	DC	12 V	2.5	AgCdO			X	
RP510024-E	1	8	DC	24 V	2.5	AgCdO			X	
RP610012-E	1	8	DC	12 V	2.5	AgCdO				X
RP611024-E	1	8	DC	24 V	2.5	AgNi0. 15				X

Print Relays Schrack, Series RP

Rated Breaking Capacity, Electrical Service Life \& Coil Operating Voltage Range

Dimensions \& Circuit Diagrams

A	RPII/1 +2
B	RPII/1, 8 A, 3.5 mm Pinning, 1 CO
C	RPII/1, 16 A, 5 mm Pinning, 1 CO
D	RPII/2, 8 A, 5 mm Pinning, 2 CO

\mathbf{E}	RP PCB Vertical
\mathbf{F}	$8 \mathrm{~A}, 2.5 \mathrm{~mm}$ Pinning, 1 CO, vertical
\mathbf{G}	RP PCB Horizontal
\mathbf{H}	$8 \mathrm{~A}, 2.5 \mathrm{~mm}$ Pinning, 1 CO, horizontal

Print Relays

- Print Relays Schrack, Series RP

Dimensions (mm) \& Circuit Diagrams

- Print Relays Schrack, Series RP

Rated Breaking Capacity, Electrical Service Life \& Coil Operating Voltage Range

A	RPII/1 Max. DC rated breaking capacity
B	RPII/1 Electrical endurance
C	RPII/1 Coil operating range DC
D	RPII/2 Max. DC rated breaking capacity
E	RPII/2 Electrical endurance
F	RPII/2 Coil operating range DC
G	RP Power PCB relay card E (horizontal// vertikal) Max. DC rated breaking capacity
H	RP Power PCB relay card E (horizontal// vertikal) Coil operating range DC
\#1	Resistive load

\#2	250 V AC Resistive load
\#3	U_{N} Nominal coil voltage
\#4	1 contact
\#5	2 contacts in series
1	DC current in [A]
11	Switching current in [A]
U	DC voltage in [V]
$\mathrm{U} / \mathrm{U}_{\mathrm{N}}$	Coil voltage in [V]
Z	Cycles
$ง$	Ambient temperature in $\left[{ }^{\circ} \mathrm{C}\right]$

- Print Relays Schrack, Series RP

Technical Data

RPII/ 1			
CONTACT DATA		8 A	16 A
Number of contacts and type		1 CO	
Rated current		8 A	16 A
Rated voltage/ max. switching voltage AC		250 / 400 V	
Limiting making current		16 A	25 A
Max. rated breaking capacity AC		2000 VA	4000 VA
Contact material		AgNio. 15	AgCdO
Frequency of operation	With Load Without Load	$\begin{gathered} 600 \mathrm{~h}^{-1} \\ 72000 \mathrm{~h}^{-1} \end{gathered}$	
Operate/ release time max.		$8 / 2 \mathrm{~m}$	
Bounce time		$2 / 4 \mathrm{~m}$	
COIL DATA			
Operative range, IEC 61810		2	
INSULATION DATA			
Initial dielectric strength	Open contacts	$1000 \mathrm{~V}_{\mathrm{ms}}$	
	Conatct and coil	$4000 \mathrm{~V}_{\mathrm{ms}}$	
Clearance/ creepage	Contact and coil	$\geq 8 / 8 \mathrm{~mm}$	
Ambient temperature		$-40 \ldots+70^{\circ} \mathrm{C}$	

RPII/2

RP Power PCB relay card E
CONTACT DATA

Number of contacts and type	8 A, wash fight
Rated current	1 CO
Rated voltage/max. switching voltage AC	8 A
Limiting making current, max. 4 s , duty factor 10%	$250 / 400 \mathrm{~V}$
Max. rated breaking capacity AC	15 A
Contact material	2000 V
Frequency of operation	With Load
	Without Load

Print Relays Schrack, Series RP

DESCRIPTION	AVAILABLE	ORDER NO.
RPII/1		
12V-DC, 1 CO, 16A	-000\%	RP310012-A
24V-DC, 1 CO, 16A	-000\%	RP310024-A
24V-DC, 1 CO, 12A	0×0	RP418024-A
RPII/2		
12V-DC, 2 CO, 8A		RP420012-B
24V-DC, 2 CO, 8A		RP420024-B
$24 \mathrm{~V}-\mathrm{AC}, 2 \mathrm{CO}, 8 \mathrm{~A}$		RP420524-B
230V-AC, $2 \mathrm{CO}, 8 \mathrm{~A}$	0000	RP420730-B
24V-DC, 2 CO, 8A		RP421024-B
$230 \mathrm{~V}-\mathrm{AC}, 2 \mathrm{CO}, 8 \mathrm{~A}$	-00\%	RP421730-B
24V-DC, 2 CO, 8A		RP820024-A
RP Power PCB Relay Cards E Vertical		
12V-DC, 1 CO, 8A	-000\%	RP510012-E
24V-DC, 1 CO, 8A		RP510024-E
RP Power PCB Relay Cards E Horizontal		
12V-DC, 1 CO, 8A		RP610012-E
24V-DC, 1 CO, 8A	000000	RP611024-E

Print Relays

Schrack-Info
RTI

- 1 pole $12 / 16$ A, AC or DC coil
- 1 CO or 1 NO
- Sensitive coil $400 \mathrm{~mW} / 0.75$ VA
- $5 \mathrm{kV}, 10 \mathrm{~mm}$ coil/contact
- Appliance class II (VDE 0700)
- Safe disconnection compliant with VDE 0160 in combination with socket YRT78626
- Ambient temperature $85^{\circ} \mathrm{C}$ (DC coil)
- Low component height 15.7 mm
- Gold plated contacts available
- Print and screw type sockets
- For boiler controls, timer relays, garage door controls, vending machines, interface modules

RT1 Inrush and High Inrush

- 1 pole 16 A, for high peak inrush current
- 1 NO
- RTS3T024 (= High Inrush) with Tungsten early-make contact
- Sensitive coil 400 mW
- $5 \mathrm{kV}, 10 \mathrm{~mm}$ coil/contact
- Appliance class II (VDE 0700)
- Ambient temperature $85^{\circ} \mathrm{C}$
- Low component height 15.7 mm
- Print and screw type sockets
- For household appliances, heating controls, light controls, building automation

RT2

- 2 poles 8 A, AC or DC coil
- 2 CO
- Sensitive coil 400 mW
- $5 \mathrm{kV}, 10 \mathrm{~mm}$ coil/contact
- Appliance class II (VDE 0700)
- Safe disconnection compliant with VDE 0160 in combination with socket YRT78626
- Low component height 15.7 mm
- Print and screw type sockets
- For household appliances, heating controls, emergency lighting, modems

RT2 Bistable

- 2 poles 8 A
- 2 CO
- Bistable version with one (= RT424A24) or two coils (RT424F 12 or RT424F24)
- Reinforced insulation
- For battery powered devices or memory storage applications
- Print Relays Schrack, Series RT
- RT Overview

Relais	Number of contacts and type	Rated current [A]	Coil		Pinning [mm]	Contact material	RT1	$\underset{\text { RTI }}{\text { Inrush }}$	RTI High Inrush	RT2	$\begin{gathered} \text { RT2 } \\ \text { Bistable } \\ \hline \end{gathered}$
RT114012	1 CO	12	DC	12 V	3.5	AgNi90/10	X				
RT114024	1 CO	12	DC	24 V	3.5	AgNi90/10	X				
RT114524	1 CO	12	AC	24 V	3.5	AgNi90/10	X				
RT214012	1 CO	12	DC	12 V	5	AgNi90/10	X				
RT214024	1 CO	12	DC	24 V	5	AgNi90/10	X				
RT214730	1 CO	12	AC	230 V	5	AgNi90/10	X				
RT314005	1 CO	16	DC	5 V	5	AgNi90/10	X				
RT314012	1 CO	16	DC	12 V	5	AgNi90/10	X				
RT314024	1 CO	16	DC	24 V	5	AgNi90/10	X				
RT334024	1 NO	16	DC	24 V	5	AgNi90/10	X				
RT314110	1 CO	16	DC	110 V	5	AgNi90/10	X				
RT314524	1 CO	16	AC	24 V	5	AgNi90/10	X				
RT314730	1 CO	16	AC	230 V	5	AgNi90/10	X				
RT315730	1 CO	16	AC	230 V	5	AgNi90/10 hgp*	X				
RT33K012	1 NO	16	DC	12 V	5	AgNi90/10		X			
RT33K024	1 NO	16	DC	24 V	5	$\mathrm{AgNi90} / 10$		X			
RT31L024	1 CO	16	DC	24 V	5	AgSnO_{2}		X			
RTS3T024	1 NO	16	DC	24 V	5	$\mathrm{T}^{* *}+\mathrm{AgSnO}_{2}$			X		
RT424006	2 CO	8	DC	6 V	5	AgNi90/10				X	
RT424012	2 CO	8	DC	12 V	5	AgNi90/10				X	
RT424024	2 CO	8	DC	24 V	5	AgNi90/10				X	
RT425024	2 CO	8	DC	24 V	5	AgNi90/10 hgp*				X	
RTE24024	2 CO	8	DC	24 V	5	AgNi90/10				X	
RT424048	2 CO	8	DC	48 V	5	AgNi90/10				X	
RT424060	2 CO	8	DC	60 V	5	AgNi90/10				X	
RT424110	2 CO	8	DC	110 V	5	AgNi90/10				X	
RT424524	2 CO	8	AC	24 V	5	AgNi90/10				X	
RT424548	2 CO	8	AC	48 V	5	AgNi90/10				X	
RT424615	2 CO	8	AC	115V	5	AgNi90/10				X	
RT425615	2 CO	8	AC	115 V	5	AgNi90/10 hgp*				X	
RT424730	2 CO	8	AC	230 V	5	AgNi90/10				X	
RT425730	2 CO	8	AC	230 V	5	AgNi90/10 hgp*				X	
RT424A24	2 CO	8	DC	24 V	5	AgNi90/10					X
RT424F12	2 CO	8	DC	12 V	5	AgNi90/10					X
RT424F24	2 CO	8	DC	24 V	5	AgNi90/10					X

*hgp = hard gold-plated

* *Tungsten pre-contact

Dimensions (mm)

Dimensions
A \quad RT1, RT1 Inrush, RT1 High Inrush, RT2 und RT2 Bistable 1 coil (RT424A24)
B \quad RT2 Bistable 2 coils (RT424F 12 bzw. RT424F24)

Print Relays

Print Relays Schrack, Series RT

Rated Breaking Capacity \& Coil Operating Voltage Range RT 1

Inrush and High Inrush Rated Breaking Capacity \& Coil Operating Voltage Range RT1

Rated Breaking Capacity \& Coil Operating Voltage Range RT2

- Print Relays Schrack, Series RT

Rated Breaking Capacity \& Coil Operating Voltage Ranges

RTI	
\mathbf{A}	Max. DC rated breaking capacity
\mathbf{B}	Coil operating range DC
\mathbf{C}	Coil operating range AC
\#1	Resistive load
\#2	16 A version
\#3	Recommended voltage range in [V]
\mathbf{U}	DC voltage in [V]
$\mathbf{U} / \mathbf{U}_{\text {rtd }}$	Coil voltage in $[\mathrm{V}]$
\mathbf{I}	DC current in $[\mathrm{A}]$
$\boldsymbol{\vartheta}$	Ambient temperature in [$\left.{ }^{\circ} \mathrm{C}\right]$

RT1 Inrush und High Inrush	
A	Max. DC rated breaking capacity
B	Coil operating range DC (RT3)
\mathbf{C}	Coil operating range DC (RTS)
\#1	Resistive load
\#2	Recommended voltage range in [V]
\#3	Monostable version
\mathbf{U}	DC voltage in [V]
$\mathbf{U / U} \mathbf{U r t a}$	Coil voltage in [V]
\mathbf{I}	DC current in [A]
\boldsymbol{U}	Ambient temperature in $\left[{ }^{\circ} \mathrm{C}\right]$

RT2

A	Max. DC rated breaking capacity
B	Coil operating range DC
\mathbf{C}	Coil operating range AC
\#1	1 contact
\#2	2-pole resistive load
\#3	2 contacts in series
\#4	Recommended voltage range in [V]
\#5	Rated coil voltage in [V]
\mathbf{U}	DC voltage in [V]
$\mathbf{U} / \mathbf{U}_{\text {rtd }}$	Coil voltage in [V]
\mathbf{I}	DC current in [A]
\boldsymbol{U}	Ambient temperature in [$\left.{ }^{\circ} \mathrm{C}\right]$

RT2 Bistable	
A	Max. DC rated breaking capacity
B	Electrical endurance
C	Coil operating range, 1 coil
D	Coil operating range, 2 coils
\#1	1 contact
\#2	2 contacts in series
\#3	2-pole resistive load
\#4	250 V AC resistive load
\#5	Max. SET
\#6	Max. SET and RESET 16 A, $2 \times 8 \mathrm{~A}$
\#7	Max. RESET
\#8	$\mathrm{U}_{\text {rid }}$ Rated coil voltage
\#9	SET
\#10	RESET
\#11	Max. SET and RESET
U	DC voltage in [V]
$\mathbf{U} / \mathbf{U r t d}^{\text {rem }}$	Coil voltage in [V]
I	DC current in [A]
11	Switching current in [A]
Z	Cycles
$ง$	Ambient temperature in [${ }^{\circ} \mathrm{C}$]

Print Relays

- Print Relays Schrack, Series RT

Rated Breaking Capacity, Electrical Service Life \& Coil Operating Voltage Range RT2 Bistable

- Print Relays Schrack, Series RT

Rated Breaking Capacity \& Coil Operating Voltage Ranges

RTI	
\mathbf{A}	Max. DC rated breaking capacity
\mathbf{B}	Coil operating range DC
\mathbf{C}	Coil operating range AC
\#1	Resistive load
\#2	16 A version
\#3	Recommended voltage range in [V]
\mathbf{U}	DC voltage in [V]
$\mathbf{U} / \mathbf{U}_{\text {rtd }}$	Coil voltage in $[\mathrm{V}]$
\mathbf{I}	DC current in $[\mathrm{A}]$
$\boldsymbol{\vartheta}$	Ambient temperature in [$\left.{ }^{\circ} \mathrm{C}\right]$

RT1 Inrush und High Inrush	
\mathbf{A}	Max. DC rated breaking capacity
B	Coil operating range DC (RT3)
\mathbf{C}	Coil operating range DC (RTS)
\#1	Resistive load
\#2	Recommended voltage range in [V]
\#3	Monostable version
\mathbf{U}	DC voltage in [V]
$\mathbf{U / U} \mathbf{U r t a}$	Coil voltage in [V]
\mathbf{I}	DC current in [A]
\boldsymbol{U}	Ambient temperature in $\left[{ }^{\circ} \mathrm{C}\right]$

RT2

\mathbf{A}	Max. DC rated breaking capacity
\mathbf{B}	Coil operating range DC
\mathbf{C}	Coil operating range AC
\#1	1 contact
\#2	2-pole resistive load
\#3	2 contacts in series
\#4	Recommended voltage range in [V]
\#5	Rated coil voltage in [V]
\mathbf{U}	DC voltage in [V]
$\mathbf{U} / \mathbf{U}_{\text {rtd }}$	Coil voltage in [V]
\mathbf{I}	DC current in [A]
$\boldsymbol{\vartheta}$	Ambient temperature in [$\left.{ }^{\circ} \mathrm{C}\right]$

RT2 Bistable	
A	Max. DC rated breaking capacity
B	Electrical endurance
C	Coil operating range, 1 coil
D	Coil operating range, 2 coils
\#1	1 contact
\#2	2 contacts in series
\#3	2-pole resistive load
\#4	250 V AC resistive load
\#5	Max. SET
\#6	Max. SET and RESET 16 A, $2 \times 8 \mathrm{~A}$
\#7	Max. RESET
\#8	$\mathrm{U}_{\text {rid }}$ Rated coil voltage
\#9	SET
\#10	RESET
\#11	Max. SET and RESET
U	DC voltage in [V]
$\mathbf{U} / \mathbf{U r t d}^{\text {rem }}$	Coil voltage in [V]
I	DC current in [A]
11	Switching current in [A]
Z	Cycles
$ง$	Ambient temperature in [${ }^{\circ} \mathrm{C}$]

Print Relays

- Print Relays Schrack, Series RT

Wiring Diagrams

B
\# 2.1

C

D
\#6. 1

Circuit Diagrams

A	RT1
B	RT1 Inrush and High Inrush
C	RT2
D	RT2 Bistable
\#1.1	12 A, pinning 3.5 mm
\#1.2	1 CO
\#1.3	1 NO
\#2.1	12 A, pinning 5 mm
\#2.2	1 CO
\#2.3	1 NO
\#3.1	16 A, pinning 5 mm

\#3.2	1 CO
\#3.3	1 NO
\#4.1	16 A, pinning 5 mm
\#4.2	1 NO
\#4.3	1 CO
\#5.1	8 A, pinning 5 mm
\#5.2	2 CO
\#5.3	2 NO
\#6.1	8 A, pinning 5 mm
\#6.2	For 2 coil version only
\#6.3	2 CO

[^1]
Print Relays Schrack, Series RT

- Technical Data (Part 1)

CONTACT DATA		RT1	
		12 A	16 A
Number of contacts and type		1 CO or 1 NO contact	
Contact style		Single contact	
Rated current		12 A	16 A
Rated voltage/ max. switching voltage AC		$250 / 400 \mathrm{~V}$	
Limiting continious current		12 A	16 A, UL: 20 A
Max. rated breaking capacity AC		3000 VA	4000 VA
Limiting making current (max. 4 s at 10 \% DF)		25 A	30 A
Contact material		AgNi 90/10, $\mathrm{AgNi} 90 / 10$ hard gold plated	
COIL DATA			
Rated voltage	DC coil	$\begin{gathered} \hline 5 . .110 \mathrm{~V} \\ 24 . . .230 \mathrm{~V} \sim \end{gathered}$	
	AC coil		
Rated power	DC coil	400 mW	
	AC coil	0.74 VA	
Operative range, IEC 61810		2	
Coil insulation system according to UL1446		Class F	
Operation-/ release voltage/ coil resistance	24 V DC coil	$16.8 \mathrm{~V} / 2.4 \mathrm{~V} / 1440 \Omega \pm 10 \%$	
at ambient temperature $23{ }^{\circ} \mathrm{C}$	230 V AC coil	$172.5 \mathrm{~V} / 34.5 \mathrm{~V} / 32500 \Omega \pm 10 \%$	

RTI Inrush and High Inrush

CONTACT DATA		RT3	RTS
Number of contacts and type		1 CO oder 1 NO	1 NO
Contact style		Single contact	
Rated current		16 A	
Rated voltage / max. switching voltage AC		$250 / 400 \mathrm{~V} \sim$	
Limiting continuous current		16 A	
Max. rated breaking capacity AC		4000 VA	
Limiting making current		30 A (max. 4 s at 10% DF)	165 A (max. 20 ms incandescent lamps) 800 A (max. 200μ s fluorescent lamps)
Contact material		$\mathrm{AgNi} 90 / 10, \mathrm{AgSnO}_{2}$	W (lead contact) $+\mathrm{AgSnO}_{2}$
COIL DATA			
Rated voltage		5...110 V DC	
Rated power		400 mW	
Operative range, IEC 61810		2	
Coil insulation system according to UL1446		Class F	
Operation-/ release voltage/ coil resistance	24 V DC coil	$16.8 \mathrm{~V} / 2.4 \mathrm{~V} / 1440 \Omega \pm 10 \%$	
at ambient temperature $23{ }^{\circ} \mathrm{C}$	230 V AC coil	-	$172.5 \mathrm{~V} / 34.5 \mathrm{~V} / 32500 \Omega \pm 10 \%$

- Print Relays Schrack, Series RT

- Technical Data (Part 2)

RT2 Bistable

CONTACT DATA		8 A		
Number of contacts and type		2 CO		
Rated current		$8 \mathrm{~A}, \mathrm{UL}$: 10 A		
Rated voltage/ max. switching voltage AC		$250 / 400 \mathrm{~V}$		
Limiting continuous current		$8 \mathrm{~A}, \mathrm{UL}$: 10 A		
Max. rated breaking capacity AC		2000 VA		
Limiting making current (max. 4 s at 10% DF)		15 A		
Contact material		AgNi 90/10		
Frequency of operation	With Load Without Load		$\begin{gathered} 900 \mathrm{~h}^{-1} \\ 72000 \mathrm{~h}^{-1} \end{gathered}$	
Operate/release time max.		$10 / 5 \mathrm{~ms}$		
Bounce time		$4 / 9 \mathrm{~ms}$		
COIL DATA		1 COIL		
Magnetic system		Bistable		
Operative range, IEC 61810		2		
Coil voltage range DC		24 V		
Limiting voltage, \% of rating voltage		120 \%		
Energization duration at < 10 \% duty factor	Min.	$30 \mathrm{~ms}$		
	Max.			
Coil insulation system according to UL1446		Class F		
BISTABLE COIL - OPERATION*		1 COIL		
Coil terminals		A1		A2
Operate		+		-
Reset		-		+

COIL DATA		2 COILS		
Magnetic system		Bistable		
Operative range, IEC 61810		2		
Coil voltage range DC		$12 / 24 \mathrm{~V}$		
Limiting voltage, \% of rating voltage		150 \%		
Energization duration at < 10 \% duty factor	Min.	30 ms		
	Max.	$1 \text { min. }$		
Coil insulation system according to UL1446		Class F		
BISTABLE COILS - OPERATION*		2 COILS		
Coil terminals		A1	A3	A2
Operate			+	-
Reset		-	+	

INSULATION DATA		
Initial dielectric strength	Open contacts	$1000 \mathrm{~V}_{\text {ms }}$
	Conatct and coil	$5000 \mathrm{~V}_{\text {ms }}$
	Adjacent contacts	$2500 \mathrm{~V}_{\text {rms }}$
Clearance/ creepage	Conatct and coil	$>10 / 10 \mathrm{~mm}$
	Adjacent contacts	$>3 / 4 \mathrm{~mm}$
Ambient temperature	Bistable 1 coil	$-10 \ldots+85^{\circ} \mathrm{C}$
	Bistable 2 coils	$-40 \ldots+85^{\circ} \mathrm{C}$

[^2]- Print Relays Schrack, Series RT

DESCRIPTION	AVAILABLE	ORDER NO.
Print Relays RT 1, 12A		
12V-DC, 1 CO, 12A		RT114012
$24 \mathrm{~V}-\mathrm{DC}, 1 \mathrm{CO}, 12 \mathrm{~A}$	$+\infty=-\pi$	RT114024
$24 \mathrm{~V}-\mathrm{AC}, 1 \mathrm{CO}, 12 \mathrm{~A}$	- $-\infty$	RT114524
12V-DC, 1 CO, 12A	-	RT214012
24V-DC, 1 CO, 12A		RT214024
230V-AC, 1 CO, 12A	-00\%	RT214730
Print Relays RT1, 16A		
5V-DC, 1 CO, 16A		RT314005
12V-DC, 1 CO, 16A	- -0×0	RT314012
24 V -DC, 1 CO, 16A	$+\infty-\infty$	RT314024
24 V -DC, $1 \mathrm{NO}, 16 \mathrm{~A}$	- $-0-0.7$	RT334024
24V-AC, 1 CO, 16A	-000-9,	RT314524
230V-AC, 1 CO, 16A	- $-\infty$	RT314730
230V-AC, 1 CO, 16A, gold plated	-000\%	RT315730
Print Relays RT1 Inrush		
12V-DC, 1 NO, 16A	-000-9,	RT33K012
24V-DC, 1 NO, 16A	- $-\infty \times 0$	RT33K024
24V-DC, 1 CO, 16A	- -800	RT31 L024
Print Relays RT1 High Inrush		
24V-DC, 1 NO, 16A	$+\infty-\infty$	RTS3T024
Print Relays RT2		
6V-DC, 2 CO, 8A	- -6×8	RT424006
12V-DC, $2 \mathrm{CO}, 8 \mathrm{~A}$	-000-9,	RT424012
24V-DC, 2 CO, 8A	- $+\cdots \times-\infty$	RT424024
$24 \mathrm{~V}-\mathrm{DC}, 2 \mathrm{CO}, 8 \mathrm{~A}$, gold plated	-500-7	RT425024
24V-DC, $2 \mathrm{CO}, 8 \mathrm{~A}$	-000-9,	RTE24024
48V-DC, $2 \mathrm{CO}, 8 \mathrm{~A}$	-000-0,	RT424048
60V-DC, $2 \mathrm{CO}, 8 \mathrm{~A}$	$+\infty 0$	RT424060
110 V -DC, $2 \mathrm{CO}, 8 \mathrm{~A}$	- -0×0	RT424110
24V-AC, 2 CO, 8A	-000-9,	RT424524
$48 \mathrm{~V}-\mathrm{AC}, 2 \mathrm{CO}, 8 \mathrm{~A}$	-000-9,	RT424548
$115 \mathrm{~V}-\mathrm{AC}, 2 \mathrm{CO}, 8 \mathrm{~A}$	-000-6)	RT424615
$115 \mathrm{~V}-\mathrm{AC}, 2 \mathrm{CO}, 8 \mathrm{~A}$, gold plated	-000-9,	RT425615
230V-AC, $2 \mathrm{CO}, 8 \mathrm{~A}$	-000-n)	RT424730
230V-AC, 2 CO, 8A, gold plated	-000-8)	RT425730
Print Relays RT2 Bistable		
24V-DC, 2 CO, 8A	-000-9,	RT424A24
12V-DC, $2 \mathrm{CO}, 8 \mathrm{~A}$	-00\%-9,	RT424F 12
24V-DC, 2 CO, 8A		RT424F24

Print Relays

Print Relays Schrack, Series RY

- Schrack-Info
- 1 pole 8 A
- 1 CO or 1 NO
- Coil 12 or 24 V DC
- Pinning $3.2(\mathrm{CO})$ or $5 \mathrm{~mm}(\mathrm{NO})$
- Low component height of 12.3 mm
- Reinforced insulation (appliance class II)
- RY530012 (NO version) especially suitable for ohmic or inductive loads
- For heating controls, interface technology, household appliances, timers, thermostats

Dimensions \& Circuit Diagrams (mm)

Dimensions \& Circuit Diagrams

A	1 CO, Pinning 3.2 mm
B	1 NO, Pinning 5 mm

- Print Relays Schrack, Series RY

Rated Breaking Capacity, Electrical Service Life \& Coil Operating Voltage Range

Rated Breaking Capacity, Electrical Service Life \& Coil Operating Voltage Range

\mathbf{A}	Max. DC rated breaking capacity
\mathbf{B}	Electrical endurance
\mathbf{C}	Coil operating range DC
$\mathbf{\# 1}$	Resistive load
$\mathbf{\# 2}$	250 V AC Resistive load
$\mathbf{\# 3}$	Recommended voltage range
\mathbf{I}	DC current in $[\mathrm{A}]$
$\mathbf{I 1}$	Switching current in $[\mathrm{A}]$
\mathbf{U}	DC voltage in $[\mathrm{V}]$
$\mathbf{U} / \mathbf{U}_{\text {ntd }}$	Coil voltage in $[\mathrm{V}]$
\mathbf{Z}	Cycles
\boldsymbol{U}	Ambient temperature in $\left[{ }^{\circ} \mathrm{C}\right]$

Technical Data
CONTACT DATA

Print Relays

Print Relays Schrack, Series SNR

Schrack-Info

- 1 pole 6 A
- 1 CO or 1 NO
- Coil 12 or 24 V DC
- Sensitive coil 170 mW
- Only 5 mm component width
- High component density and tight-packed functionality
- Reinforced insulation (appliance class II)
- Cadmium-free contact material AgSnO_{2}
- For interface technology, SPS, timers, centralised and decentralised heating controls

Dimensions (mm)

Rated Breaking Capacity, Electrical Service Life \& Coil Operating Voltage Range

Rated Breaking Capacity, Electrical Service Life \& Coil Operating Voltage Range

A	Max. DC rated breaking capacity
B	Electrical endurance
C	Coil operating range DC
\#1	Resistive load
\#2	250 V AC Resistive load
\#3	Recommended voltage range

\mathbf{I}	DC current in $[\mathrm{A}]$
$\mathbf{I I}$	Switching current in $[\mathrm{A}]$
\mathbf{U}	DC voltage in $[\mathrm{V}]$
$\mathbf{U} / \mathbf{U}_{\text {rd }}$	Coil voltage in $[\mathrm{V}]$
\mathbf{Z}	Cycles
\boldsymbol{U}	Ambient temperature in $\left[{ }^{\circ} \mathrm{C}\right]$

Print Relays Schrack, Series SNR
Circuit Diagrams

- Circuit Diagrams

A	Bottom view on solder pins
B	1 CO
C	1 NO

Technical Data
CONTACT DATA

Print Relays

Print Relays Schrack, Series PT

Schrack-Info

- 4 poles 6 A
- AC or DC coil (PT581024 or PT571730)
- 4 CO
- Up to 1500 VA switching capacity (PT5 relays)
- Component height 29 mm
- Cadmium-free contact material
- Mechanical and electrical status indicator, PT581024 with LED
- Touch protection test switch, choice of locking method
- White labelling field
- Multi-purpose use for control and machine building

Dimensions (mm)

Print Relays Schrack, Series PT

Rated Breaking Capacity, Electrical Service Life \& Coil Operating Voltage Ranges

Rated Breaking Capacity, Electrical Service Life \& Coil Operating Voltage Ranges

A	Max. DC rated breaking capacity
B	Electrical endurance
C	Coil operating range DC
D	Coil operating range AC
\#1	Resistive load
\#2	4 contacts
\#3	4 -pole
\#4	250 V AC resistive load
\#5	Recommended voltage range in [V]
U	DC voltage in [V]
$\mathbf{U} / \mathbf{U}_{\text {rid }}$	Coil voltage in [V]
1	DC current in [A]
11	Switching current in [A]
Z	Cycles
\checkmark	Ambient temperature in [${ }^{\circ} \mathrm{C}$]

Print Relays

- Print Relays Schrack, Series PT
- Circuit Diagram

A	PCB layout 4-pole, 4 CO
B	LED (for PT581024)

\qquad

Technical Data

- Force-guided Contacts Relays Schrack, Series SR, Print Version

Schrack-Info

SR2

- 2 poles with force-guided contacts 6 A
- 2 CO
- Coil 24 V DC
- Contact material AgNi
- Reinforced insulation between the poles
- Complies with EN 50205

SR4

- 4 poles with force-guided contacts 8 A
- 2 NO, 2 NC (SR4D4024) or 3 NO, 1 NC (SR4M4024)
- Coil 24 V DC
- Contact material AgSnO_{2}
- Compact, slim-line design
- Complies with EN 50205

SR6

- 6 poles with force-guided contacts 8 A
- 4 NO, 2 NC
- Coil 24 V DC
- Contact material AgSnO_{2}
- Reinforced insulation between all contacts
- Complies with EN 50205

Multi-purpose application of SR2, SR4 \& SR6

- For emergency stops, machine and press controls, elevators and escalators, safety switches

Force-guided Contacts Relays Schrack, Series SR

- Force-guided Contacts Relays Schrack, Series SR, Print Version

Dimensions (mm) \& Circuit Diagrams

Dimensions \& Circuit Diagrams

\#1	SR2
\#1.1	2 CO, 6 A
\#2	SR4
\#2.1	2 NO und 2 NC, 8 A
\#2.2	3 NO und 1 NC, 8 A
\#3	SR6
\#3.1	4 NO und 2 NC, 8 A

Rated Breaking Capacity, Electrical Service Life \& Coil Operating Voltage Range SR2

Force-guided Contacts Relays Schrack, Series SR, Print Version

Rated Breaking Capacity, Electrical Service Life \& Coil Operating Voltage Range SR4

Rated Breaking Capacity, Electrical Service Life \& Coil Operating Voltage Range SR6

Rated Breaking Capacity, Electrical Service Life \& Coil Operating Voltage Ranges

SR2	
A	Max. DC rated breaking capacity
B	Electrical service life
C	Coil operating range DC
\#1	Resistive load
\#2	250 V AC resistive load
\#3	Recommended voltage range in [V]
U	DC voltage in [V]
$\mathrm{U} / \mathrm{U}_{\text {rid }}$	Coil voltage in [V]
1	DC current in [A]
11	Switching current in [A]
Z	Cycles
$ง$	Ambient temperature in $\left[{ }^{\circ} \mathrm{C}\right]$

SR4	
A	Max. DC rated breaking capacity
B	Electrical service life
C	Coil operating range DC
\#1	Resistive load
\#2	250 V AC resistive load on 1 NO
contact	

SR6	
A	Max. DC rated breaking capacity
B	Electrical service life
C	Coil operating range DC
\#1	Resistive load
\#2	250 V AC resistive load on 1 NO
contact	

Force-guided Contacts Relays Schrack, Series SR

Force-guided Contacts Relays Schrack, Series SR, Print Version

- Technical Data

CONTACT DATA		SR2	SR4		SR6
Number of contacts and type		2 CO	2 NO und 2 NC or 3 NO und 1 NC		4 NO und 2 NC
Contact style	EN 50205	Single contact, force guided			
Rated current		6 A	8 A		
Rated voltage/ max. switching voltage AC		$250 / 400 \mathrm{~V} \sim$			
Min. recommended contact load		$5 \mathrm{~V} / 10 \mathrm{~mA}$			
Initial contact resistance		$<100 \mathrm{~m} \Omega$ at $1 \mathrm{~A}, 24 \mathrm{~V}$ DC			
Contact material		AgNi	AgSnO_{2}		
Frequency of operation	With load	$6 \mathrm{~min}^{-1}$			
	Without load	$300 \mathrm{~min}^{-1}$	$150 \mathrm{~min}^{-1}$		
Contact ratings according to IEC60947-5-1	AC15	-	$3 \mathrm{~A}(1 \mathrm{NO})$		$5 \mathrm{~A}(2 \mathrm{NO})$
	DC13	-			$6 \mathrm{~A}(2 \mathrm{NO})$
Mechanical service life		10×10^{6} Operations			
INSULATION DATA					
Dielectric strength	Open contacts	$1500 \mathrm{~V}_{\text {ms }}$			
	Contact and coil	$4000 \mathrm{~V}_{\text {ms }}$			
	Adjacent contacts	$3000 \mathrm{~V}_{\text {ms }}$	$2500 \mathrm{~V}_{\text {ms }}$		$3000 \mathrm{~V}_{\text {ms }}$
Clearance/ creepage	Open contacts	Micro disconnection			
	Contact and coil	$\geq 8 / 8 \mathrm{~mm}$	$\geq 10 / 10 \mathrm{~mm}$		$\geq 5.5 / 5.5 \mathrm{~mm}$
	Adjacent contacts	$\geq 5.5 / 5.5 \mathrm{~mm}$	$\geq 3 / 3.5 \mathrm{~mm}$		$\geq 5.5 / 5.5 \mathrm{~mm}$
Insulation to EN 50178					
Type of insulation	Contact and coil	Reinforced			
	Adjacent contacts	Reinforced	Basic		Reinforced
Ambient temperature		$-25 . .+70^{\circ} \mathrm{C}$			
DESCRIPTION			AVAILABLE		ORDER NO.
24V-DC, 2 CO, 6A		-000-600			SR2Y5024
24V-DC, 2 NO, 2 NC, 8A		$\begin{array}{lll} -\infty 0 & -0 \\ \hline 00 \end{array}$			SR4D4024
24V-DC, 3 NO, 1 NC, 8A		- $-\infty$			SR4M4024
24V-DC, 4 NO, 2 NC, 8A					SR6B4024

Force-guided Contacts Relays Schrack, Series SR, in DIN Rail Module

Dimensions (mm)

Dimensions

SR2Z	Module length: 87 mm Module width: 20 mm
SR6Z	Module length: 87 mm Module width: 46 mm

General Info
Fit onto mounting rails according DIN EN 60175

Force-guided Contacts Relays Schrack, Series SR

Force-guided Contacts Relays Schrack, Series SR, in DIN Rail Module
Circuit Diagrams

Force-guided Contacts Relays Schrack, Series SR, in DIN Rail Module

- Technical Data

CONTACT DATA		SR2Z	SR6Z
Number of contacts and type		2 CO	4 NO und 2 NC
Contact style	EN 50205	Single contact, force guided	
Rated current		6 A	8 A
Rated voltage/ max. switching voltage AC		$250 / 250 \mathrm{~V} \sim$	
Min. recommended contact load		$5 \mathrm{~V} / 10 \mathrm{~mA}$	
Initial contact resistance		$\leq 100 \mathrm{~m} \Omega$ at $1 \mathrm{~A}, 24 \mathrm{~V}$ DC	
Contact material		AgNi	AgSnO_{2}
Frequency of operation	With load	$6 \mathrm{~min}^{-1}$	
	Without load	$300 \mathrm{~min}^{-1}$	$150 \mathrm{~min}^{-1}$
Contact ratings according to IEC60947-5-1	AC15	-	$5 \mathrm{~A}(1 \mathrm{NO})$
	DC13	-	$6 \mathrm{~A}(1 \mathrm{NO})$
Mechanical service life		10×10^{6} Operations	
COIL DATA			
Operative range	\% of rated coil voltage	90 to 110% of Urtd 10% of Urtd	
	Release voltage ($+23^{\circ} \mathrm{C}$)		
Limiting voltage	\% of rated coil voltage	110 \%	-
	Max. coil power	700 mW	1200 mW
Input circuit		LED	-
INSULATION DATA			
Dielectric strength	Open contacts	$1500 \mathrm{~V}_{\text {rms }}$	$1000 \mathrm{~V}_{\text {rms }}$
	Contact and coil	$4000 \mathrm{~V}_{\text {ms }}$	$3000 \mathrm{~V}_{\text {ms }}$
	Adjacent contacts	$2000 \mathrm{~V}_{\text {ms }}$	
Clearance/ creepage	Open contacts	Micro disconnection	
	Contact and coil	$\geq 8 / 8 \mathrm{~mm}$	$\geq 5.5 / 5.5 \mathrm{~mm}$
	Adjacent contacts	$\geq 1 / 1 \mathrm{~mm}$	$\geq 2.8 / 2.8 \mathrm{~mm}$
Insulation to EN 50178		Reinforced	
Type of insulation	Contact and coil		
	Adjacent contacts	Basic	
OTHER DATA			
Wire cross section	Solid wire	$2.5 \mathrm{~mm}^{2}$	
	Stranded wire	$2.5 \mathrm{~mm}^{2}$	
	Stranded wire with ferrule	$1.5 \mathrm{~mm}^{2}$	
Terminal type		Spring clamp terminals	
Mounting position		Any	
Ambient temperature	For mounting/ handling	$\begin{gathered} \hline \ldots . .40^{\circ} \mathrm{C} \\ -25 \ldots-50^{\circ} \mathrm{C} \\ \hline \end{gathered}$	
	In operation		
DESCRIPTION			AVAILABLE ORDER NO.
24V-DC, 2 CO, 6A		SR2ZYO24	
24V-DC, 4 NO, 2 NC, 8A		SR6ZB024	

Modular Devices, Control Units

M Modular Relays

Schrack-Info

- Coupling relay
- Installation design

Modular Relays

- Schrack-Info
- 1 or $2 \mathrm{CO}, 8 \mathrm{~A}$
- Supply voltage 12 or 24 up to $240 \mathrm{~V}-\mathrm{AC} / \mathrm{DC}$
- Width 17.5 or 35 mm

Type

- Modular Relays

BZ651000 Dimensions

BZ651000 Wiring Diagram

BZ652000 Dimensions

DESCRIPTION	AVAILABLE	ORDER NO.
1 CO 8A/250V-AC, Coil 24-240V AC/DC	BZ651000	
2 CO 8A/250V-AC, Coil 12-240V AC/DC	BZ652000	

PLC Series EASY

Schrack-Info
For easy switching of complex requirements. It is very easy with the EASY control relay to realize the requirements only with a keystroke or with the comfortable EASY-Soft on the PC. The easy menu navigation simplifies the entering. Saving of installation and wiring costs.

EA274108

	EA274103	EA274104	EA274108	EA274109	EA274115	EA274121
Nominal supply power	100-240 V AC	100-240 V AC	24 V DC	24 V DC	100-240 V AC	24 V DC
Power losses	5 VA	5 VA	2 W	2 W	10 VA	3,5 W
Input, digital	8	8	8	8	12	12
Input analogue 0-10 V (option)	-	-	2	2	-	4
Output, digital ($\mathrm{R}=$ relay, T =transistor)	4R	4R	4R	4R	6R	8T
Output analogue 0-10 V (option)	-	-	-	-	-	-
LC-display/keypad	yes/yes	yes/yes	yes/yes	yes/yes	yes/yes	yes/yes
Week-/year timer	-/-	yes/yes	-/-	yes/yes	yes/yes	yes/yes
Continues output	8A	8A	8A	8A	8A	0,5 A
Short-circuit proof at $\cos \varphi=1$	MCB B16 = 600 A					-
Short-circuit proof at $\cos \varphi=0,5 \ldots 0,7$	МСВ B16 = 900 A					-
Terminal connection	$0,2-4,0 \mathrm{~mm}^{2}$ (AWG 22, 12), rigid $0,2-2,5 \mathrm{~mm}^{2}$ (AWG 22, 12), flexible					
Degree of protection	IP 20					
Radio frequency interference	EN 55011, EN 55022 class B, IEC 61000-6-1,2,3,4					
Working ambient temperature	$-25^{\circ} \mathrm{C} \ldots+55^{\circ} \mathrm{C}$					
Transport and stock temperature	$-40^{\circ} \mathrm{C} \ldots+70^{\circ} \mathrm{C}$					
Approvals	EN50178, IEC/EN 60947, UL, CSA					
Mounting	rail mounting acc. DIN 50022, 35 mm or for screw mounting use adapter ZB4-101-GF1					
Measurement (W $\times \mathrm{H} \times \mathrm{D}) \mathrm{mm}$	$71,5 \times 90 \times 58 \mathrm{~mm}$				$107,5 \times 90 \times 58 \mathrm{~mm}$	

	EA212314	EA232112	EA256267	EA274110	EA274113	EA274119
Supply power	100-240 V AC	24 V DC	100-240 V AC	24 V DC	24 V DC	24 V DC
Power losses	10 VA	4 W	10 VA	2 W	7 VA	3,5 W
Input, digital	12	12	12	8	12	12
Input analogue 0-10 V (option)	-	-	-	2	4	4
Output, digital ($\mathrm{R}=$ relay, $\mathrm{T}=$ transistor	6 R	6R	6R	4R	6R	6R
Output analogue 0-10 V (option)	-	-	-	-	-	-
LC-display/keypad	-/-	-/-	yes/yes	-/-	yes/yes	yes/yes
Week-/year timer	-/-	-/-	yes/yes	yes/yes	yes/yes	yes/yes
Continues output	8A	8A	8A	8A	8A	8A
Short-circuit proof at $\cos \varphi=1$	MCB B16 $=600 \mathrm{~A}$					
Short-circuit proof at $\cos \varphi=0,5 \ldots 0,7$	МСВ B16 $=900 \mathrm{~A}$					
Terminal connection	$0,2-4,0 \mathrm{~mm}^{2}$ (AWG 22, 12), rigid $0,2-2,5 \mathrm{~mm}^{2}$ (AWG 22, 12), flexible					
Degree of protection	IP 20					
Radio frequency interference	EN 55011, EN 55022 class B, IEC 61000-6-1, 2, 3, 4					
Working ambient temperature	$-25^{\circ} \mathrm{C} \ldots+55^{\circ} \mathrm{C}$					
Transport and stock temperature	$-40^{\circ} \mathrm{C} \ldots+70^{\circ} \mathrm{C}$					
Approvals	EN50178, IEC/EN 60947, UL, CSA					
Mounting	rail mounting acc. DIN 50022, 35 mm or for screw mounting use adapter ZB4-101-GF1					
Measurement ($\mathrm{W} \times \mathrm{H} \times \mathrm{D}$) mm	$107,5 \times 90 \times 58 \mathrm{~mm}$		$\begin{gathered} 107,5 \times 90 \times 72 \\ \mathrm{~mm} \end{gathered}$	$\begin{gathered} 71,5 \times 90 \times 58 \\ \mathrm{~mm} \\ \hline \end{gathered}$	$107,5 \times 90 \times 58 \mathrm{~mm}$	

PLC Series EASY

Dimensions

Dimensions

DESCRIPTION	AVAILABLE	ORDER NO.
EASY512ACRC-100-240VAC, control relay, 8IN-digital, 4OUT-relays, clock	- $\square^{-\infty}$	EA274104
EASY512ACR-100-240VAC, control relay, 81 N -digital, 4OUT-relays	[-0000 0	EA274103
EASY512DCR-24VDC, controlrelay, 8IN-digital, 4OUT-relays	$\left[\begin{array}{rr} -\infty \\ -\infty & 0-8 \\ \hline \end{array}\right.$	EA274108
EASY512DCRC-24VDC, control relay, 8IN-digital, 4OUT-relays, clock		EA274109
EASY512DCRCX-24VDC, control relays without display, 2IN-Analog, 2IN-digital, 4OUT-relays		EA274110
EASY719ABRC-24VAC, control relay, 4IN-Analog, 8IN-digital, 4OUT-relays; clock		EA274113
EASY719ACRC-100-240VAC , control relay, 12IN-digital, 6OUT-relays, clock	$\left[\begin{array}{rr} \square & -\infty \\ -\infty & -\infty \\ \hline \end{array}\right.$	EA274115
EASY719DCRC-24VDC, control relay, 12IN-digital, 6OUT-relays, clock	$+8$	EA274119
EASY721DCTC-24VDC, control relay, 12IN-digital, 8OUT-Transistor, clock	\square	EA274121
EASY618ACRE-240VAC, control relay expansion, 12IN-dig, 6OUT-relays	- -3	EA212314
EASY618DCRC-24VDC , control relay expansion, 12IN-digital, 6OUT-relays		EA232112
EASY819ACRC-100-240VAC, control relay, 12IN-digital, 6OUT-relays, clock	$+\square_{0}+\infty$	EA256267
Windows programing software for easy400-700	\square	EA284545
EASY500/700 -Memory module, extern		EA270884
EASY-PC-Programming cable RS232; control relay easy	$\begin{array}{rrr} -\infty & 0-\infty \\ \hline \end{array}$	EA202409
EASY400-Switched power supply 100-240VAC/24VDC, 1,25A, 1 phase		EA212319
EASY800PC cable for programming	$\begin{array}{rr} \square & -\infty \\ -\infty & 0-8 \\ \hline \end{array}$	EA256277
EASY-PC-Programming cable USB; easy $500+700$	$\begin{array}{rrr} -\infty & \infty \\ \hline \end{array}$	EA 107926

Timer Relays

Timer Relays Series ZR5

- Timer Relays Series ZR4

Timer Relays Series AMPARO

Timer Relays Series ZR5

Timer Relays Series ZR4

Timer Relays Series ZR6

Timer Relays

Timer Relays Series ZR5 Page 98
Timer Relays Series ZR4 Page 107
Timer Relays Series AMPARO Page 112
Timer Relays Series ZR6 Page 116

Timer Relays

- Timer Relays Series ZR5

Schrack-Info

ZR5E0011

- 1 CO
- Mode: "E"
- Multi-voltage 24-240 V AC/DC
- In-line design
- 17.5 mm component width

ZR5R0011

- 1 CO
- Mode: "R"
- Multi-voltage 24-240 V AC/DC
- In-line design
- 17.5 mm component width

ZR5ERO11

- 1 CO
- Modes: "E" \& "R"
- Multi-voltage 24-240 V AC/DC
- In-line design
- 17.5 mm component width

ZR5MFOII

- Multi-function timer relay
- 1 CO
- Modes: "E", "R", "Ws", "Wa", "Es", "Wu" \& "Bp"
- Multi-voltage 12-240 V AC/DC
- In-line design
- 17.5 mm component width

ZR5MF025

- Multi-function timer relay
- 2 CO
- Modes: "E", "R", "Ws", "Wa", "Es", "Wu" \& "Bp"
- Multi-voltage 12-240 V AC/DC
- In-line design
- 35 mm component width

ZR5B0011

- 1 CO
- Modes: " lp" \& "li"
- Multi-voltage 12-240 V AC/DC
- In-line design
- 17.5 mm component width

ZR5B0025

- Multi-function dual time flasher relay with internal clock
- 2 CO
- Wide input voltage range
- Modes: "lp", "li", "ER", "EWu", "EWs", WsWa" \& "Wt"
- Multi-voltage 12-240 V AC/DC
- In-line design
- 35 mm component width

ZR5SD025

- 2 CO
- Wide input voltage range
- Mode: "S"
- Multi-voltage $12-240 \mathrm{~V}$ AC/DC
- In-line design
- 35 mm component width

ZR5RT011

- Timer function for emergency lighting tests
- 1 CO
- Integrated test switch
- Mode: "Ws"
- 230 V AC
- In-line design
- 17.5 mm component width

NOTE:

- The timer function must be selected in a de-energised state!
- Timer Relays Series ZR5
- Overview Timer Relays ZR5

Article	Number of contacts and type	Voltage range	Number of time ranges	Number of functions	E	R	Ws	Wa	Es	Wu	Bp	Ip	li	ER	EWu	EWs	WsWa	Wt	S	WsTest
ZR5E0011	1 CO	24-240 V AC / DC	7	1	X															
ZR5R0011	1 CO	$24-240$ V AC / DC	7	1		x														
ZR5ER011	1 CO	$24-240$ V AC / DC	7	2	X	X														
ZR5MFO11	1 CO	12-240 V AC / DC	7	7	X	X	X	X	X	X	X									
ZR5MF025	2 CO	12-240 V AC / DC	7	7	X	X	X	X	X	X	X									
ZR5B0011	1 CO	12-240 V AC / DC	7	2								X	X							
ZR5B0025	2 CO	12-240 V AC / DC	7	7								X	X	X	X	X	X	X		
ZR5SD025	2 CO	$12-240$ V AC / DC	4	1															X	
ZR5RTO11	1 CO	230 V AC	6	1																X

O Overview Modes

Article	
ZR5EOO11	Time relay ON delay
ZR5R0011	Time relay OFF delay
ZR5ERO11	Time relay ON-OFF delay
ZR5MFO11	Multifunction time relays
ZR5MF025	
ZR5B0011	Pulse time relay
ZR5B0025	
ZR5SD025	Star-Delta relay
ZR5RTO11	Emergency light test relay

E	ON delay	
\mathbf{R}	OFF delay	(with control contact)
$\mathbf{W s}$	Single shot leading edge	(with control contact)
$\mathbf{W a}$	Single shot trailing edge	(with control contact)
Es	ON delay	(with control contact)
$\mathbf{W u}$	Single shot leading edge voltage controlled	
$\mathbf{B p}$	Flasher pause first	(with control contact)
ER	ON and OFF delay	
EWu	ON delay and single shot leading edge voltage controlled	(with control contact)
EWs	ON delay and single shot leading edge	(with control contact)
$\mathbf{W s W a}$	Single shot leading- and single shot trailing edge	
$\mathbf{W t}$	Pulse sequence monitoring	
\mathbf{S}	Star-Delta start-up	(with control contact)
$\mathbf{W s T e s t ~}$	Single shot leading edge	

ZR5B0011

$\mathbf{I p}$	Asymmetric flasher pause first (flashing)
$\mathbf{l i}$	Asymmetric flasher pulse first (flashing)

ZR5B0025

Ip	Asymmetric flasher pause first (pulsing)
li	Asymmetric flasher pulse first (pulsing)

Timer Relays

Timer Relays Series ZR5
Dimensions (mm)

Configuration \& Functionalities
Configuration \& Functions

Example ZR5MFOII

$\mathbf{1}$	Operation display
$\mathbf{2}$	Adjustable time range 50 ms to 100 h
$\mathbf{3}$	Adjustable function area ($\mathrm{E}, \mathrm{R}, \mathrm{Ws}, \mathrm{Wa}, \mathrm{Es}, \mathrm{Wu}$ and Bp)
$\mathbf{4}$	45 mm cap dimension
$\mathbf{5}$	Multi-voltage 12 or 24 V to $240 \mathrm{~V} \mathrm{AC} / \mathrm{DC}$

Time Ranges

ZR5EOO11, ZR5ROO11, ZR5ERO11, ZR5MFO11, ZR5MFO25, ZR5B0011, ZR5B0025	
Time range	Adjustment range
1 s	$50 \mathrm{~ms}-1 \mathrm{~s}$
10 s	$500 \mathrm{~ms}-10 \mathrm{~s}$
1 min	$3 \mathrm{~s}-1 \mathrm{~min}$
10 min	$30 \mathrm{~s}-10 \mathrm{~min}$
1 h	$3 \mathrm{~min}-1 \mathrm{~h}$
10 h	$30 \mathrm{~min}-10 \mathrm{~h}$
100 h	$5 \mathrm{~h}-100 \mathrm{~h}$

ZR5SDO25	
Time range	Adjustment range
10 s	$500 \mathrm{~ms}-10 \mathrm{~s}$
30 s	$1500 \mathrm{~ms}-30 \mathrm{~s}$
1 min	$3 \mathrm{~s}-1 \mathrm{~min}$
3 min	$9 \mathrm{~s}-3 \mathrm{~min}$

ZR5RTOII
Time range reversible
between
$10 \mathrm{~min}, 30$ min, 60 min,
$90 \mathrm{~min}, 2 \mathrm{~h}$ und 3 h

Timer Relays Series ZR5
Overview Circuit Diagrams

Timer Relays

Timer Relays Series ZR5

■ Overview Circuit Diagrams

| A | ON/OFF-DELAY RELAYS | |
| :---: | :---: | :---: | :---: |
| A1 | ON delay (E) | without control contact |
| A2 | OFF delay (R) | with control contact "S" |
| A3 | ON delay (E) | without control contact |
| A4 | OFF delay (R) | with control contact "S" |
| B | MULTIFUNCTION RELAYS | |
| B1 | OFF delay (R), Single shot leading edge (Ws), Single shot trailing edge (Wa) and | |
| ON delay with control input (Es) | | |

E		
M/S		EWs
Wa		
ES		
MU		
		WsTest
II		

Overview Modes

Article	E	R	Ws	Wa	Es	Wu	Bp	Ip	li	ER	EWu	EWs	WsWa	Wt	S	WsTest
ZR5E0011	X															
ZR5R0011		X														
ZR5ERO11	X	X														
ZR5MF011	X	X	X	X	X	X	X									
ZR5MF025	X	X	X	X	X	X	X									
ZR5B0011								X	X							
ZR5B0025								X	X	X	X	X	X	X		
ZR5SD025															X	
ZR5RTO11																X

Detailed Description of Modes (Part 1)

ZR5B0011

	Asymmetric flasher pause first (flashing)
Ip	When the supply voltage \mathbf{U} is applied, the set interval $\mathbf{t 1}$ begins (green LED \mathbf{U} / \mathbf{t} flashes slowly). After the interval $\boldsymbol{t 1}$ has expired, the output relay \mathbf{R} switches into on-position (yellow LED illuminated) and the set interval $\mathbf{t 2}$ begins (green LED \mathbf{U} / \mathbf{t} flashes fast). After the interval $\mathbf{t 2}$ has expired, the output relay switches into off-position (yellow LED not illuminated). The output relay is triggered at the ratio of $\mathbf{t 1 : t 2}$ until the supply voltage is interrupted.

Ip	Asymmetric flasher pause first (pulsing) When the supply voltage \mathbf{U} is applied, the set interval $\mathbf{t} \mathbf{1}$ begins (green LED $\mathbf{U} / \mathbf{\dagger}$ flashes slowly). After the interval $\mathbf{t 1}$ has expired, the output relay \mathbf{R} switches into on-position (yellow LED illuminated) and the set interval $\mathbf{t 2}$ begins (green LED U/t flashes fast). After the interval $\mathbf{+ 2}$ has expired, the output relay switches into off-position (yellow LED not illuminated). The output relay is triggered at the ratio of $\mathbf{t 1 : t 2}$ until the supply voltage is interrupted.

li	Asymmetric flasher pulse first (pulsing)When the supply voltage \mathbf{U} is applied, the output relay \mathbf{R} switches into on-position (yellow LED illuminated) and the set interval $\mathbf{t 1}$ begins (green LED \mathbf{U} / \mathbf{t} flashes slowly). After the interval $\mathbf{t 1}$ has expired, the output relay switches into off-position (yellow LED not illuminated) and the set interval $\mathbf{+ 2}$ begins (green LED \mathbf{U} / \mathbf{t} flashes fast). After the interval $\mathbf{+ 2}$ has expired, the output relay switches into on-position (yellow LED illuminated). The output relay is triggered at the ratio of $\mathbf{t 1 : + 2}$ until the supply voltage is interrupted.

Timer Relays

Timer Relays Series ZR5

Detailed Description of Modes (Part 2)

ON delay	
	When the supply voltage \mathbf{U} is applied, the set interval \mathbf{t} begins (green LED \mathbf{U} / \mathbf{t} flashes). After the interval \mathbf{t} has expired (green LED \mathbf{U} / \mathbf{t} illuminated) the output relay \mathbf{R} switches into on-position (yellow LED illuminated). This status remains until the supply voltage is interrupted. If the supply voltage is interrupted before the expiry of the interval \mathbf{t}, the interval already expired is erased and is restarted when the supply voltage is next applied.

ON delay

When the supply voltage \mathbf{U} is applied, the set interval \mathbf{t} begins (green LED \mathbf{U} / \mathbf{t} flashes). After the interval \mathbf{t} has expired (green LED U/t illuminated) status remains until the supply voltage is interrupted. If the supply voltage is erased and is restarted when the supply voltage is next applied.

OFF delay with control contact "S"

The supply voltage \mathbf{U} must be constantly applied to the device (green LED \mathbf{U} / \mathbf{t} illuminated). When the control contact \mathbf{S} is closed, the output relay \mathbf{R} switches into on-position (yellow LED illuminated). If the control contact is opened, the set interval \mathbf{t} begins (green LED U/t flashes). After the interval t has expired (green LED U/t illuminated) the output relay switches into offposition (yellow LED not illuminated). If the control contact is closed again before the interval thas expired, the interval already expired is erased and is restarted

Single shot leading edge with control contact "S"

The supply voltage \mathbf{U} must be constantly applied to the device (green LED \mathbf{U} / \mathbf{t} illuminated). When the control contact \mathbf{S} is closed, the output relay \mathbf{R} switches into on-position (green LED U/t illuminated) and the set interval \mathbf{t} begins (green LED U/t flashes). After the interval \mathbf{t} has expired (green LED \mathbf{U} / \mathbf{t} illuminated) the output relay switches into off-position (yellow LED not illuminated). During the interval, the control contact can be operated any number of times. A further cycle can only be started when the cycle run has been completed.

Single shot trailing edge with control contact " S "

The supply voltage \mathbf{U} must be constantly applied to the device (green LED \mathbf{U} / \mathbf{t} illuminated). Closing the control contact \mathbf{S} has no influence on the condition of the output \mathbf{R}. When the control contact is opened, the output relay switches into on-position (yellow LED illuminated) and the set interval \boldsymbol{t} begins (green LED \mathbf{U} / \mathbf{t} flashes). After the interval \mathbf{t} has expired (green LED \mathbf{U} / \mathbf{t} illuminated), the output relay switches into off-position (yellow LED not illuminated). During the interval, the control contact can be operated any number of times. A further cycle can only be started when the cycle run has been completed.

ON delay with control contact "S"

The supply voltage \mathbf{U} must be constantly applied to the device (green LED \mathbf{U} / \mathbf{t} illuminated). When the control contact \mathbf{S} is closed, the set interval \mathbf{t} begins (green LED \mathbf{U} / \mathbf{t} flashes). After the interval \mathbf{t} has expired (green LED \mathbf{U} / \mathbf{t} illuminated) the output relay \mathbf{R} switches into on-position (yellow LED illuminated). This status remains until the control contact is opened again. If the control contact is opened before the interval \boldsymbol{t} has expired, the interval already expired is erased and is restarted with the next cycle.

Single shot leading edge, voltage controlled

When the supply voltage \mathbf{U} is applied, the output relay \mathbf{R} switches into on-position (yellow LED illuminated) and the set interval \mathbf{t} begins (green LED \mathbf{U} / \mathbf{t} flashes). After the interval \mathbf{t} has expired (green LED $\mathbf{U} / \mathbf{t} \boldsymbol{i l l u m i n a t e d) ~}$ the output relay switches into off-position (yellow LED not illuminated). This status remains until the supply voltage is interrupted. If the supply voltage is interrupted before the interval t has expired, the output relay switches into off-position. The interval already is erased and is restarted when the supply voltage is next applied.

Flasher pause first

When the supply voltage \mathbf{U} is applied, the set interval \mathbf{t} begins (green LED \mathbf{U} / \mathbf{t} flashes). After the interval \mathbf{t} has expired, the output relay \mathbf{R} switches into on-position (yellow LED illuminated) and the set interval \mathbf{t} begins again After the interval \mathbf{t} has expired, the output relay switches into off-position (yellow LED not illuminated). The output relay is triggered at a ratio of $1: 1$ until the supply voltage is interrupted.

ON delay and OFF delay with control contact "S"

The supply voltage \mathbf{U} must be constantly applied to the device (green LED \mathbf{U} / \mathbf{t} illuminated). When the control contact \mathbf{S} is closed, the set interval $\mathbf{t 1}$ begins (green LED U/t flashes slowly). After the interval $\mathbf{t 1}$ has expired, the output relay \mathbf{R} switches into on-position (yellow LED illuminated). If the control contact is opened, the set interval $\mathbf{t} \mathbf{2}$ begins (green LED \mathbf{U} / \mathbf{t} flashes fast). After the interval $\mathbf{t} \mathbf{2}$ has expired, the output relay switches into offposition (yellow LED not illuminated). If the control contact is opened before the interval $\mathbf{t 1}$ has expired, the interval already expired is erased and is restarted with the next cycle.

ON delay and single shot leading edge, voltage controlled

When the supply voltage \mathbf{U} is applied, the set interval $\mathbf{t 1}$ begins (green LED U/t flashes slowly). After the interval $\mathbf{t 1}$ has expired, the output relay \mathbf{R} switches into on-position (yellow LED illuminated) and the set interval $\mathbf{t} \mathbf{2}$ begins (green LED U/t flashes fast). After the interval $\mathbf{t 2}$ has expired, the output relay switches into off-position (yellow LED not illuminated). If the supply voltage is interrupted before the interval $\mathbf{1 1 + \mathbf { + } 2}$ has expired, the interval already expired is erased and is restarted when the supply voltage is next applied.

ON delay and single shot leading edge with control contact "S" The supply voltage \mathbf{U} must be constantly applied to the device (green LED \mathbf{U} / \mathbf{t} illuminated). When the control contact \mathbf{S} is closed, the set interval $\mathbf{t 1}$ begins (green LED U/t flashes slowly). After the interval $\mathbf{t 1}$ has expired, the output relay \mathbf{R} switches into on-position (yellow LED illuminated) and the set interval $\mathbf{t} \mathbf{2}$ begins (green LED \mathbf{U} / \mathbf{t} flashes fast). After the interval t2 has expired, the output relay switches into off-position (yellow LED not illuminated). During the interval, the control contact can be operated any number of times. A further cycle can only be started when the cycle run has been completed.

Single shot leading and single shot trailing edge with control contact | |
| :--- |
| Sing |

The supply voltage \mathbf{U} must be constantly applied to the device (green LED \mathbf{U} / \mathbf{t} illuminated). When the control contact \mathbf{S} is closed, the output relay \mathbf{R} switches into on-position (yellow LED illuminated) and the set interval $\mathbf{t 1}$ begins (green LED U/t flashes slowly). After the interval $\mathbf{t} \mathbf{1}$ has expired, the output relay \mathbf{R} switches into off-position (yellow LED not illuminated). If the control contact is opened, the output relay again switches into on-position (yellow LED illuminated) and the set interval $\mathbf{+ 2}$ begins (green LED $\mathbf{U} / \boldsymbol{\dagger}$ flashes fast). After the interval $\mathbf{t} \mathbf{2}$ has expired the output relay switches into off-position (yellow LED not illuminated). During the interval, the control contact can be operated any number of times.

Pulse sequence monitoring
 When the supply voltage \mathbf{U} is applied, the set interval $\mathbf{t 1}$ begins (green LED U/† flashes slowly) and the output relay \mathbf{R} switches into on-position (yellow LED illuminated) After the interval $\mathbf{t 1}$ has expired, the set interval $\mathbf{t 2}$ begins (green LED U/t flashes fast). So that the output relay \mathbf{R} remains into on-position, the control contact \mathbf{S} must be closed and opened again within the set interval $\mathbf{+ 2}$. If this does not happen, the output relay \mathbf{R} switches into off-position (yellow LED not illuminated) and all further pulses at the control contact are ignored. To restart the function the supply voltage must be interrupted and reapplied.

Star-delta start up

When the supply voltage \mathbf{U} is applied, the star-contact switches into onposition (yellow LED illuminated) and the set star-time $\boldsymbol{\dagger} \mathbf{1}$ begins (green LED \mathbf{U} / \mathbf{t} flashes). After the interval $\mathbf{t} \mathbf{l}$ has expired (green LED \mathbf{U} / \mathbf{t} illuminated), the star-contact switches into off-position (yellow LED not illuminated) and the set transit-time $\mathbf{+ 2}$ begins. After the interval $\mathbf{t 2}$ has expired, the contact for the delta-contactor switches into on-position. To restart the function, the supply voltage must be interrupted and reapplied.

Single shot leading edge with control contact "S"

The supply voltage \mathbf{U} must be constantly to the device (green LED U/t illuminated). Pressing the integrated test key forces the output relay \mathbf{R} to switch into on-position (yellow LED illuminated), so the emergency lights are disconnected from the mains and the set interval \mathbf{t} begins (green LED \mathbf{U} / \mathbf{t} flashes). After the interval \mathbf{t} has expired (green LED $\mathbf{U} / \mathbf{t} \boldsymbol{i l l} \mathbf{u m i n a t e d) , ~ t h e ~}$ output relay \mathbf{R} switches into off-position (yellow LED not illuminated) and the emergency lights are reconnected to the mains. During the interval, the test key can be operated any number of times. Prolonged pressure on the test key (>2s) aborts the running test interval (green LED \mathbf{U} / \mathbf{t} flashes fast) and a further cycle can be started.

- Timer Relays Series ZR5
- Technical Data

			ZR5E0011	ZR5R0011	ZR5ERO11	ZR5MFO11	ZR5MFO25
INDICATORS	Green LED U/t ON		Indication of supply voltage				
	Green LED U/t flashes		Indication of time period				
	Yellow LED R ON/OFF		Indication of relay outputs				
MECHANICAL DESIGN	Housing		Self-extinguishing plastic housing IP40				
	IP rating housing						
	Mounting	(EN 50022)	DIN-rail TS 35				
	Terminal	(VBG 4, PZ1 required)	Shockproof terminal connection				
	IP rating terminal		IP20				
	Mounting position		Any				
	Tightening torque		Max. 1 Nm				
	Terminal capacity		1×0.5 to $2.5 \mathrm{~mm}^{2}$ with/without multicore cable end $1 \times 4 \mathrm{~mm}^{2}$ without multicore cable end 2×0.5 to $1.5 \mathrm{~mm}^{2}$ with/without multicore cable end $2 \times 2.5 \mathrm{~mm}^{2}$ flexible without multicore cable end				
INPUT CIRCUIT	Input		Terminals A1 (+)-A2				
	Supply voltage		24-240 V AC / DC			12-240 V AC/DC	
	Tolerance		$24 \mathrm{~V} . . .-15 \%$ to 240 V... 10 \%			$12 \mathrm{~V} . . .-10 \%$ to 240 V.... 10%	
	Rated consumption		$4 \mathrm{VA}(1.5 \mathrm{~W})$				$6 \mathrm{VA}(2 \mathrm{~W})$
	Rated frequency		48 to 63 Hz				
	Duty cycle		100 \%				
	Reset time		100 ms				
	Residual ripple for DC		10 \%				
	Drop-out voltage		> 30% of minimum rated supply voltage				
	Overvoltage category	(IEC 60664-1)	III				
	Rated surge voltage		4 kV				
OUTPUT CIRCUIT	Number of contacts and type		1 CO				2 potential free CO contacts
	Rated voltage		250 V AC				
	Switching capacity		$2000 \mathrm{VA}(8 \mathrm{~A} / 250 \mathrm{~V})$				
	Fusing		8 A fast acting				
	Mechanical service life		20×10^{6} operations				
	Electrical service life		2×10^{5} operations at 1000 VA resistive load				
	Switching frequency	(IEC 947-5-1)	Max. $60 / \mathrm{min}$ at 100 VA resistive load, $\max .6 / \mathrm{min}$ at 1000 VA resistive load				
	Overvoltage category	(IEC 60664-1)	III				
	Rated surge voltage				4 kV		
CONTROL INPUT	Input not potential free		NO CONTROL CONTACT	Terminals A1-B1			
	Loadable			Yes			
	Max. line length			10 m			
	Trigger level (sensitivity)			Automatic adaption to supply voltage			
	Min. control pulse length			DC $50 \mathrm{~ms}, \mathrm{AC} 100 \mathrm{~ms}$			
ACCURACY	Base accuracy		$\pm 1 \%$ of maximum scale value				
	Adjustment accuracy		< 5% of maximum scale value				
	Repetition accuracy		$<0.5 \%$ or $\pm 5 \mathrm{~ms}$				
	Voltage influence		-				
	Temperature influence		$\leq 0.01 \% /{ }^{\circ} \mathrm{C}$				
AMBIENT CONDITIONS	Ambient temperature	(IEC 68-1)	$-25^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$				
	Storage temperature		$-25^{\circ} \mathrm{C}$ to $+70{ }^{\circ} \mathrm{C}$				
	Transport temperature		$-25^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$				
	Relative humidity	(IEC 721-3-3 class 3K3)	15% to 85%				
	Pollution degree	(IEC 664-1)	2, if built in 3				
	Vibration resistance	(IEC 68-2-6)	10 to $55 \mathrm{~Hz}, 0.35 \mathrm{~mm}$				
	Shock resistance	(IEC 68-2-27)	$15 \mathrm{~g}, 11 \mathrm{~ms}$				

Timer Relays

- Timer Relays Series ZR5

DESCRIPTION	AVAILABLE	ORDER NO.
Tripping and Release Delay		
Timer single function ON-delay $24-240 \mathrm{~V}$ AC/DC, $1 \mathrm{CO}, 8 \mathrm{~A} / 250 \mathrm{~V}$		ZR5E0011
Timer single function OFF-delay $24-240 \mathrm{~V}$ AC/DC, $1 \mathrm{CO}, 8 \mathrm{~A} / 250 \mathrm{~V}$	0000	ZR5R0011
Timer duo function ON/OFF-delay 24-240V AC/DC, 1CO, 8A/250V	(00000)	ZR5EROII
Multi-function Relays		
Timer multifunction 12-240V AC/DC, 1CO, 8A/250V	- 00000	ZR5MF011
Timer mullifunction 12-240V AC/DC, 2CO, 8A/250V	0×0	ZR5MF025
Flasher Relays		
Timer flashing 12-240V AC/DC, 1CO, 8A/250V		ZR5B0011
Two-time multifunction 12-240V AC/DC, 2CO, 8A/250V		ZR5B0025
Star-Delta Relays		
Timer Star-Delta 12-240V AC, 2CO, 8A	- +000	ZR5SD025
Emergency Lighting Testers		
Emergency-light-test-relay 230V, modular version	-0000000	ZR5RTOII

Timer Relays Series ZR4, for Round 11 Pole Plug-in Socke

Schrack-Info

ZR4MF025-A

- Multi-function relay
- 2 CO
- Modes: "E", "R", "Ws", "Wa", "Es", "Wu" \& "Bp"
- For 11 pole plug-in MT socket
- Multi-voltage 12-240 V AC/DC
- 38 mm component width
- Standard front dimension 45 mm

ZR4B0025-A

- Flasher relay
- 2 CO
- Internal clock
- Dual time multi-function
- Zoom voltage
- Modes: "lp", "li", "ER", "EWu", "EWs", WsWa" \& "Wt"
- For 11 pole plug-in MT socket
- Multi-voltage 12-240 V AC/DC
- 38 mm component width
- Standard front dimension 45 mm

YMR78700

- MT socket compatible with pluggable Series ZR4 timer relays
- Overview ZR4 Timer Relays

Article	Number of contacts and type	Voltage range	Number of time ranges	Number of functions	E	R	Ws	Wa	Es	Wu	Bp	Ip	li	ER	EWu	EWs	WsWa	Wt
ZR4MF025-A	2 CO	12-240 V AC / DC	7	7	X	X	X	X	X	X	X							
ZR4B0025-A	2 CO	12-240 V AC / DC	7	7								X	X	X	X	X	X	X

Timer Relays

- Timer Relays Series ZR4, for Round 11 Pole Plug-in Socket
- Overview Modes

Functions		
E	ON delay	
R	OFF delay	(with control contact)
Ws	Single shot leading edge	(with control contact)
Wa	Single shot trailing edge	(with control contact)
Es	ON delay	(with control contact)
Wu	Single shot leading edge voltage controlled	
Bp	Flasher pause first	
ER	ON and OFF delay	(with control contact)
EWu	ON delay and single shot leading edge voltage controlled	
EWs	ON delay and single shot leading edge	(with control contact)
WsWa	Single shot leading- and single shot trailing edge	(with control contact)
Wt	Pulse sequence monitoring	
Ip	Asymmetric flasher pause first	
li	Asymmetric flasher pulse first	

Dimensions (mm)

Circuit Diagrams Overview

- Time Ranges

ZR4MF025-A, ZR4B0025-A	
Time range	Adjustment range
1 s	$50 \mathrm{~ms}-1 \mathrm{~s}$
10 s	$500 \mathrm{~ms}-10 \mathrm{~s}$
1 min	$3 \mathrm{~s}-1 \mathrm{~min}$
10 min	$30 \mathrm{~s}-10 \mathrm{~min}$
1 h	$3 \mathrm{~min}-1 \mathrm{~h}$
10 h	$30 \mathrm{~min}-10 \mathrm{~h}$
100 h	$5 \mathrm{~h}-100 \mathrm{~h}$

Timer Relays Series ZR4, for Round 11 Pole Plug-in Socket

- Modes

Overview Modes

Article	\mathbf{E}	\mathbf{R}	$\mathbf{W s}$	$\mathbf{W a}$	$\mathbf{E s}$	$\mathbf{W u}$	$\mathbf{B p}$	Ip	li	ER	EWu	EWs	WsWa	Wt
ZR4MF025-A	X	X	X	X	X	X	X							
ZR4B0025-A								X	X	X	X	X	X	X

Detailed Description of Modes (Part 1)

E	ON delay When the supply voltage \mathbf{U} is applied, the set interval \mathbf{t} begins (green LED \mathbf{U} / \mathbf{t} flashes). After the interval \mathbf{t} has expired (green LED \mathbf{U} / \mathbf{t} illuminated) the output relay \mathbf{R} switches into on-position (yellow LED illuminated). This status remains until the supply voltage is interrupted. If the supply voltage is interrupted before the expiry of the interval \mathbf{t}, the interval already expired is erased and is restarted when the supply voltage is next applied.

	OFF delay with conrol contact "S"
The supply voltage \mathbf{U} must be constantly applied to the device (green LED \mathbf{U} / \mathbf{t} illuminated). When the control contact \mathbf{S} is closed, the output relay \mathbf{R} switches into on-position (yellow LED illuminated). If the control contact is opened, the set interval \mathbf{t} begins (green LED \mathbf{U} / \mathbf{t} flashes). After the interval \mathbf{t} has expired (green LED \mathbf{U} / \mathbf{t} illuminated) the output relay switches into off- position (yellow LED not illuminated). If the control contact is closed again before the interval \mathbf{t} has expired, the interval already expired is erased and is restarted.	

Ws	Single shot leading edge with control contact "S"

	Asymmetric flasher pause first
Ip	When the supply voltage \mathbf{U} is applied, the set interval $\mathbf{t 1}$ begins (green LED \mathbf{U} / \mathbf{t} flashes slowly). After the interval $\mathbf{t 1}$ has expired, the output relay \mathbf{R} switches into on-position (yellow LED illuminated) and the set interval $\mathbf{t 2}$ begins (green LED \mathbf{U} / \mathbf{t} flashes fast). After the interval $\mathbf{t 2}$ has expired, the output relay switches into off-position (yellow LED not illuminated). The output relay is triggered at the ratio of $\mathbf{t 1 : t 2}$ until the supply voltage is interrupted.

li	Asymmetric flasher pulse first
	When the supply voltage \mathbf{U} is applied, the output relay \mathbf{R} switches into on-position (yellow LED illuminated) and the set interval $\boldsymbol{\dagger} 1$ begins (green LED U/t flashes slowly). After the interval $\boldsymbol{\mathbf { 1 }}$ has expired, the output relay switches into off-position (yellow LED not illuminated) and the set interval $\mathbf{t 2}$ begins (green LED $\mathbf{U} / \mathbf{\dagger}$ flashes fast). After the interval $\mathbf{~} \mathbf{2}$ has expired, the output relay switches into on-position (yellow LED illuminated). The output relay is triggered at the ratio of $\mathbf{t 1 : t 2}$ until the supply voltage is interrupted.

| $\mathbf{E R} \quad$ON delay and OFF delay with control contact "S"
 \mathbf{U} must be constantly applied to the device (green LED
 \mathbf{U} / \mathbf{t} illuminated). When the control contact \mathbf{S} is closed, the set interval $\mathbf{t 1}$
 begins (green LED \mathbf{U} / \mathbf{t} flashes slowly). After the interval $\mathbf{t 1}$ has expired,
 the output relay \mathbf{R} switches into on-position (yellow LED illuminated). If the
 control contact is opened, the set interval $\mathbf{t 2}$ begins (green LED \mathbf{U} / \mathbf{t} flashes
 fast). After the interval $\mathbf{t 2}$ has expired, the output relay switches into off-
 position (yellow LED not illuminated). If the control contact is opened before
 the interval $\mathbf{t 1}$ has expired, the interval already expired is erased and is
 restarted with the next cycle. |
| :--- | :--- |

Timer Relays

Timer Relays Series ZR4, for Round 11 Pole Plug-in Socket

Detailed Description of Modes (Part 2)

$\mathbf{W a}$	Single shot trailling edge with control contact "S" The supply voltage \mathbf{U} must be constantly applied to the device (green LED $\mathbf{U / t}$ illuminated). Closing the control contact \mathbf{S} has no influence on the condition of the output \mathbf{R}. When the control contact is opened, the output relay switches into on-position (yellow LED illuminated) and the set interval \mathbf{t} begins (green LED $\mathbf{U / t}$ flashes). After the interval \mathbf{t} has expired (green LED $\mathbf{U / t}$ illuminated), the ouput relay switches into off-position (yellow LED not illuminated). During the interval, the control contact can be operated any number of times. A further cycle can only be started when the cycle run has been completed.

The supply voltage \mathbf{U} must be constantly applied to the device (green LED \mathbf{U} / \mathbf{t} illuminated). Closing the control contact \mathbf{S} has no influence on the condition of the output \mathbf{R}. When the control contact is opened, the output relay switches into on-position (yellow LED illuminated) and the set interval \boldsymbol{t} $\mathbf{U / t}$ illuminated), the ouput relay switches into off-position (yellow LED not illuminated). During the interval, the control contact can be operated any been completed

ON delay with control contact "S"

The supply voltage \mathbf{U} must be constantly applied to the device (green LED \mathbf{U} / \mathbf{t} illuminated). When the control contact \mathbf{S} is closed, the set interval $\boldsymbol{\dagger}$
Es begins (green LED U/t flashes). After the interval \mathbf{t} has expired (green LED \mathbf{U} / \mathbf{t} illuminated) the output relay \mathbf{R} switches into on-position (yellow LED illuminated). This status remains until the control contact is opened again. If the control contact is opened before the interval \boldsymbol{t} has expired, the interval already expired is erased and is restarted with the next cycle.

Single shot leading edge, voltage controlled

When the supply voltage \mathbf{U} is applied, the output relay \mathbf{R} switches into on-position (yellow LED illuminated) and the set interval \mathbf{t} begins (green LED \mathbf{U} / \mathbf{t} flashes). After the interval \mathbf{t} has expired (green LED \mathbf{U} / \mathbf{t} illuminated) the output relay switches into off-position (yellow LED not illuminated). This status remains until the supply voltage is interrupted. If the supply voltage is interruted before the interval thas expired, the output relay switches into off-position. The interval already is erased and is restarted when the supply voltage is next applied.

Flasher pause first

When the supply voltage \mathbf{U} is applied, the set interval \mathbf{t} begins (green LED $\mathbf{U} / \mathbf{\dagger}$ flashes). After the interval \mathbf{t} has expired, the output relay \mathbf{R} switches

Bp

	ON delay and single shot leading edge, voltage controlled
EWu	When the supply voltage \mathbf{U} is applied, the set interval $\boldsymbol{\dagger} \mathbf{l}$ begins (green LED U/t flashes slowly). After the interval $\mathbf{t 1}$ has expired, the output relay \mathbf{R} switches into on-position (yellow LED illuminated) and the set interval $\mathbf{2}$ begins (green LED \mathbf{U} / \mathbf{t} flashes fast). After the interval $\mathbf{t 2}$ has expired, the output relay switches into off-position (yellow LED not illuminated). If the supply voltage is interrupted before the interval $\mathbf{1 1 + \mathbf { t }}$ has expired, the interval already expired is erased and is restarted when the supply voltage is next applied.

EWs	ON delay and single shot leading edge with control contact "S"The supply voltage \mathbf{U} must be constantly applied to the device (green LED \mathbf{U} / \mathbf{t} illuminated). When the control contact \mathbf{S} is closed, the set interval $\mathbf{t 1}$ begins (green LED \mathbf{U} / \mathbf{t} flashes slowly). After the interval $\mathbf{t 1}$ has expired, the output relay \mathbf{R} switches into on-position (yellow LED illuminated) and the set interval $\mathbf{+ 2}$ begins (green LED \mathbf{U} / \mathbf{t} flashes fast). After the interval $\mathbf{t 2}$ has expired, the output relay switches into off-position (yellow LED not illuminated). During the interval, the control contact can be operated any number of times. A further cycle can only be started when the cycle run has been completed.

WsWa	Single shot leading and single shot trailing edge with control contact "S"
The supply voltage \mathbf{U} must be constantly applied to the device (green LED \mathbf{U} / \mathbf{t} illuminated). When the control contact \mathbf{S} is closed, the output relay \mathbf{R} switches into on-position (yellow LED illuminated) and the set interval $\mathbf{t 1}$ begins (green LED U/t flashes slowly). After the interval $\mathbf{t 1}$ has expired, the output relay \mathbf{R} switches into off-position (yellow LED not illuminated). If the control contact is opened, the output relay again switches into on-position (yellow LED illuminated) and the set interval $\mathbf{t 2}$ begins (green LED \mathbf{U} / \mathbf{t} flashes fast). After the interval t2 has expired the output relay switches into off-position (yellow LED not illuminated). During the interval, the control contact can be operated any number of times.	

Wt	Pulse sequence monitoringWhen the supply voltage \mathbf{U} is applied, the set interval $\mathbf{t 1}$ begins (green LED \mathbf{U} / \mathbf{t} flashes slowly) and the output relay \mathbf{R} switches into on-position (yellow LED illuminated) After the interval $\mathbf{t 1}$ has expired, the set interval $\mathbf{t 2}$ begins (green LED \mathbf{U} / \mathbf{t} flashes fast). So that the output relay \mathbf{R} remains into on-position, the control contact \mathbf{S} must be closed and opened again within the set interval $\mathbf{+ 2}$. If this does not happen, the output relay \mathbf{R} switches into off-position (yellow LED not illuminated) and all further pulses at the control contact are ignored. To restart the function the supply voltage must be interrupted and reapplied.

－Timer Relays Series ZR4，for Round 11 Pole Plug－in Socket
－Technical Data

			ZR4MF025－A	ZR4B0025－A		
INDICATORS	Green LED U／ヶ ON		Indication of supply voltage			
	Green LED U／ヶ flashes		Indication of time period	Indication of time period t1		
	Green LED U／t flashes fast		－	Indication of time period $\dagger 2$		
	Yellow LED R ON／OFF		Indication of relay output			
MECHANICAL DESIGN	Housing IP rating housing		Self－extinguishing plastic housing IP40			$\begin{aligned} & \text { Page } \\ & 111 \end{aligned}$
	Mounting	（IEC 60067－1－18。）	$\frac{\text { 1P40 }}{11 \text {－pole socket YMR78700 }}$			
	Terminal （VBG 4，PZ1 required）		Shockproof terminal connection			
	Mounting position		Any			
	Tightening torque		Max． 1 Nm			
	Terminal capacity		1×0.5 to $2.5 \mathrm{~mm}^{2}$ with／without multicore cable end $1 \times 4 \mathrm{~mm}^{2}$ without multicore cable end 2×0.5 to $1.5 \mathrm{~mm}^{2}$ with／without multicore cable end $2 \times 2.5 \mathrm{~mm}^{2}$ flexible without multicore cable end			
INPUT CIRCUIT	Pins		S2（＋）－S 10 ／A1（＋）－A2			
	Supply voltage		12－240 V AC／DC			
	Tolerance		－10\％to＋10\％			
	Rated consumption		$6 \mathrm{VA}(2 \mathrm{~W})$			
	Reated frequency		48 to 63 Hz			
	Duty cycle		100 \％			
	Reset time		100 ms			
	Residual ripple for DC		10 \％			
	Drop－out voltage		＞ 30% of the supply voltage			
	Overvoltage category（IEC 60664－1）		III			
	Rated surge voltage		4 kV			
OUTPUT CIRCUIT	Number of contacts and type		2 potential free CO contacts			
	Rated voltage		250 V AC			
	Switching capacity		2000 VA（8A／ 250 V ）			
	Fusing		8 A fast acting			
	Mechanical service life		20×10^{6} operations			
	Electrical service life		2×10^{5} operations at 1000 VA resistive load			
	Switching frequency（IEC 60947－5－1）		Max． 6 ／min at 1000 VA resistive load			
	Overvoltage category（IEC 60664－1）		III			
	Rated surge voltage		4 kV			
CONTROL CIRCUIT	Input not potential free		Pins S2－S5			
	Loadable		Yes			
	Max．line length		10 m			
	Trigger level（sensitivity）		Automatic adaption to supply voltage			
	Min．control pulse length		DC 50 ms ，AC 100 ms			
ACCURACY	Base accuracy		$\pm 1 \%$ of maximum scale value			
	Adjusting accuracy		＜ 5% of maximum scale value			
	Repition accuracy		$<0.5 \%$ or $\pm 5 \mathrm{~ms}$			
	Temperature influence		$\leq 0.01 \% /{ }^{\circ} \mathrm{C}$			
AMBIENT CONDITIONS	Ambient temperature		$-25^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$			
	Storage temperature		$-25^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$			
	Transport temperature		$-25^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$			
	Relative humidity（IEC 60721－3－3 class 3K3）		15% to 85%			
	Pollution degree（IEC 60664－1）		2 ，if built in 3			
DESCRIPTION			AVAILABLE ORDER NO．			
Multi－function Relays						
Timer multifunction 12－240V AC／DC，2CO，8A，plug－version						
Flasher Relays						
Two－time multifunction 12－240VAC／DC，2CO，8A，250V，plug－version			－000－9		ZR4B0025－A	

Sockets

DIN rail mounted plug－in socket for MT3 relays and timer relays series ZR4， 11 pole，10A（3 CO），with screw terminals，not compatible with function modules
Yoon

Timer Relays

Timer Relays Series AMPARO

ZRAMF011

Schrack-Info

ZRAE0011

- Tripping delayed timer relay
- Mode: "E"
- $1 \mathrm{CO}, 5 \mathrm{~A}$
- 24-48 V DC / 24-240 V AC
- Time range 0.05 seconds - 10 hours
- Component width 17.5 mm

ZRAR0011

- Release delayed timer relay
- Mode: "R"
- $1 \mathrm{CO}, 5 \mathrm{~A}$
- 24-48 V DC / 24-240 V AC
- Time range 0.05 seconds - 10 hours
- Component width 17.5 mm

ZRAMF011

- Multi-function timer relay
- Modes: "E", "R", "Ws", "Wu", "Wa", "Bp" \& "F"
- $1 \mathrm{CO}, 5 \mathrm{~A}$
- 24-48 V DC / 24-240 V AC
- Time range 0.05 seconds - 10 hours
- Component width 17.5 mm
- Overview AMPARO Timer Relays

Article	Number of contacts and type	Voltage range	Number of time ranges	Number of functions	\mathbf{E}	\mathbf{R}	$\mathbf{W s}$	$\mathbf{W u}$	$\mathbf{W a}$	$\mathbf{B p}$	\mathbf{F}
ZRAEOOII	1 CO	$24-240 \mathrm{VAC} / \mathrm{DC}$	6	1	X						
ZRAROOII	1 CO	$24-240 \mathrm{VAC} / \mathrm{DC}$	6	1		X					
ZRAMFOII	1 CO	$24-240 \mathrm{VAC} / \mathrm{DC}$	6	7	X	X	X	X	X	X	X

- Timer Relays Series AMPARO

Overview Modes

E	Ounctions	
\mathbf{R}	OFF delay	(with control contact)
$\mathbf{W s}$	Single shot leading edge	(with control contact)
$\mathbf{W u}$	Single shot leading edge voltage controlled	
$\mathbf{W a}$	Single shot trailing edge	(with control contact)
$\mathbf{B p}$	Flasher pause first	
\mathbf{F}	T-FlipFlop (Toggle)	

Dimensions (mm)

Configuration \& Settings

Configuration \& Functionalities

$\mathbf{1}$	Fine adjustment
$\mathbf{2}$	Setting of time range
$\mathbf{3}$	Selection of the desired function
$\mathbf{4}$	Status indication U/t: LED green...Supply voltage applied R: LED yellow...Relay is active

Overview Circuit Diagrams

Timer Relays

- Timer Relays Series AMPARO
- Modes

- Overview Modes

Article	\mathbf{E}	\mathbf{R}	Ws	Wu	Wa	Bp	\mathbf{F}
ZRAEOO11	X						
ZRAR0011		X					
ZRAMFO11	X	X	X	X	X	X	X

Description of Modes

E	ON delay	
\mathbf{R}	OFF delay	with control contact
$\mathbf{W s}$	Single shot leading edge	with control contact
$\mathbf{W u}$	Single shot leading edge voltage controlled (function selector must be set on Ws and fixed jumper A1 - B1)	
$\# 1$	Function Ws with fixed jumper A1 - B1	
$\mathbf{W a}$	Single shot trailing edge	with control contact
$\mathbf{B p}$	Flasher pause first	
\mathbf{F}	T-FlipFlop (Toggle)	

- Timer Relays Series AMPARO
- Technical Data

			ZRAEOO11	ZRAR0011	ZRAMFO11
INDICATORS	Green LED U/t ON		Indication of supply voltage		
	Green LED U/ヶ flashes		Indication of time period		
	Yellow LED R ON/OFF		Relay is energized		
INPUT CIRCUIT	Terminals		A1-A2		
	Supply voltage		24-48 V DC / 24-240 V~		
	Duty cycle		100 \%		
	Bridging time		< 30 ms		
	Reset time		100 ms		
	Drop-out voltage		> 30 \%		
	Power loss		1 W		
OUTPUT CIRCUIT	Number of contacts and type		1 CO		
	Terminals		15-16-18		
	Type		Relay		
	Contact material		AgNi		
	Rated voltage		250 V		
	Max. switching voltage		250 V		
	Max. switching current		5 A		
	Rated current		$5 \mathrm{~A} / 250 \mathrm{~V}$		
	Service life	Mechanical	1×10^{6} operations		
		Electrical	1×10^{5} operations		
	Switching frequency	With load		6 / min	
		Without load		1200 / min	
	Fusing		5 A fast acting		
DATAS OF INSULATION	Pollution degree (IEC 61812-1)		2		
	Overvoltage category (IEC 61812-1)		11		
	Rated insulation voltage (IEC 61812-1)	Input circuit/ output circuit	300 V		
	Rated surge voltage (IEC 61812-1)	Input circuit/ output circuit	2500 V		
	Insulation-test-voltage (IEC 61812-1)	Input circuit/ output circuit	1600 V		
	Insulation	Input circuit/ output circuit	Basic insulation		
ELECTRICAL CONNECTION	Terminal		Screw-terminal		
	Terminal capacity	Rated terminal capacity	$2.5 \mathrm{~mm}^{2}$		
	Max. terminal capacity	Flexible with / without ferrule	$1 \times 0.25 \ldots 2.5 \mathrm{~mm}^{2}$ (23 AWG...14AWG)		
		Flexible without sleeve	$2 \times 0.25 \ldots 1.5 \mathrm{~mm}^{2}(23$ AWG...14AWG)		
		Flexible with twin-sleeve	$2 \times 0.25 \ldots 1.5 \mathrm{~mm}^{2}$ (23 AWG...14AWG)		
		Stranded without sleeve	1×0.25..	$5 \mathrm{~mm}^{2}$ (23 AW	.14AWG)
	Length without insulation		7 mm		
	Tightening torque		Max. 0.5 Nm		
GENERAL DATA	Ambient temperature	Operation	$-25 . . .50^{\circ} \mathrm{C}$		
	Dimensions (DIN 43880)	LxHxD	$17.5 \times 97 \times 57.9 \mathrm{~mm}$		
	Mounting	(EN 60715)	DIN-rail		
	Mounting position		Any		
	IP rating	Housing	IP40		
		Terminals	IP20		
DESCRIPTION			AVAILABLE ORDER NO.		
Tripping and Release Delay					
Timer single function ON-delay AMPARO, 24 V AC/DC or 230 V AC, 1 CO, 5A/230V			-00\%-0		
Timer single function OFF-delay AMPARO, 24 V AC/DC or 230 V AC, $1 \mathrm{CO}, 5 \mathrm{~A} / 230 \mathrm{~V}$			-		
Multi-function Relays					
Timer multifunction AMPARO, 24V AC/DC or 230V AC, 1 CO, 5A/230V			- $+\infty$ -		

Timer Relays

Timer Relays Series ZR6

Overview Modes
$\mathbf{1}$ delayed contact (terminals $15-16-18$) and $\mathbf{1}$ instantaneous contact (terminals 25-26-28)

$\mathbf{1}$ delayed contact (terminals 15-16-18) and $\mathbf{1}$ instantaneous contact (terminals 25-26-28)		
E11	ON delay	
R11	OFF delay	with control contact "S"
Es11	ON delay	with control contact "S"
Wu11	Single shot leading edge voltage controlled	
Ws11	Single shot leading edge	with control contact "S"
Wa11	Single shot trailing edge	with control contact "S"
Bi11	Flasher pulse first	
Bp11	Flasher pause first	

2 delayed contacts		
E20	ON delay	
R20	OFF delay	with control contact "S"
Es20	ON delay	with control contact "S"
Wu20	Single shot leading edge voltage controlled	
Ws20	Single shot leading edge	with control contact "S"
Wa20	Single shot trailing edge	with control contact "S"
Bi20	Flasher pulse first	
Bp20	Flasher pause first	

Circuit Diagram

Time Ranges

Time range	Adjustment range
1 s	$50 \mathrm{~ms}-1 \mathrm{~s}$
3 s	$150 \mathrm{~ms}-10 \mathrm{~s}$
10 s	$500 \mathrm{~ms}-10 \mathrm{~s}$
30 s	$1500 \mathrm{~ms}-30 \mathrm{~s}$
1 min	$3 \mathrm{~s}-1 \mathrm{~min}$
3 min	$9 \mathrm{~s}-3 \mathrm{~min}$
10 min	$30 \mathrm{~s}-10 \mathrm{~min}$
30 min	$90 \mathrm{~s}-30 \mathrm{~min}$
1 h	$3 \mathrm{~min}-1 \mathrm{~h}$
3 h	$9 \mathrm{~min}-3 \mathrm{~h}$
10 h	$30 \mathrm{~min}-10 \mathrm{~h}$
30 h	$90 \mathrm{~min}-30 \mathrm{~h}$
1 d	$72 \mathrm{~min}-1 \mathrm{~d}$
3 d	$216 \mathrm{~min}-3 \mathrm{~d}$
10 d	$12 \mathrm{~h}-10 \mathrm{~d}$
30 d	$36 \mathrm{~h}-30 \mathrm{~d}$

Timer Relays Series ZR6

- Modes (Part 1)

Detailed Description of Modes (Part 1)

The internal potentiometer is deactivated when a remote potentiometer is connected! The function has to be set before connecting the relay to the supply voltage.

	ON delay
	When the supply voltage \mathbf{U} is applied, the instantaneous contact switches into on-position and the set interval \mathbf{t} begins (green LED flashes). After the interval \mathbf{t} has expired (green LED illuminated) the delayed contact switches into on-position (yellow LED illuminated). This status remains until the supply voltage is interrupted. If the supply voltage is interrupted before the expiry of the interval \mathbf{t}, the interval already expired is erased and is restarted when the supply voltage is next applied.

OFF delay with control contact "S"

The supply voltage \mathbf{U} must be constantly applied to the device (green LED illuminated). When the control contact $\mathbf{Y 1}-\mathbf{Y} \mathbf{2}$ is closed, both contacts switch into on-position (yellow LED illuminated). If the control contact is R11 opened, the instantaneous contact switches into off-position and the set interval \mathbf{t} begins (green LED flashes). After the interval \mathbf{t} has expired (green LED illuminated) the delayed contact switches into off-position (yellow LED not illuminated). If the control contact is closed again before the interval \mathbf{t} has expired, the interval already expired is erased and is restarted with the next cycle.

ON delay with control contact "S"

The supply voltage \mathbf{U} must be constantly applied to the device (green LED illuminated). When the control contact $\mathbf{Y 1} \mathbf{- Y 2}$ is closed, the instantaneous contact switches into on-position and the set interval \boldsymbol{t} begins (green LED flashes). After the interval thas expired (green LED illuminated) the delayed contact switches into on-position (yellow LED illuminated). This status remains until the control contact is opened again. If the control contact is opened before the interval \mathbf{t} has expired, the interval already expired is erased and is restarted with the next cycle.

Single shot leading edge voltage controlled (Wull)

When the supply voltage \mathbf{U} is applied, both contacts switch into on-position (yellow LED illuminated) and the set interval \mathbf{t} begins (green LED flashes). After the interval thas expired (green LED illuminated) the delayed contact
Wull switches into off-position (yellow LED not illuminated). This status remains until the supply voltage is interrupted. If the supply voltage is interrupted before the interval thas expired, the both contacts switch into off-position. The interval already expired is erased and is restarted when the supply voltage is next applied.

ON delay
When the supply voltage \mathbf{U} is applied, the set interval \mathbf{t} begins (green LED flashes). After the interval thas expired (green LED illuminated) the output relay \mathbf{R} switches into on-position (yellow LED illuminated). This status remains until the supply voltage is interrupted. If the supply voltage is interrupted before the expiry of the interval \mathbf{t}, the interval already expired is erased and is restarted when the supply voltage is next applied.

R2O	OR Th ill sw sw op ex ly in w

OFF delay with control contact "S"

The supply voltage \mathbf{U} must be constantly applied to the device (green LED illuminated). When the control contact $\mathbf{Y 1}-\mathbf{Y 2}$ is closed, the output relay \mathbf{R} switches into on-position (yellow LED illuminated). If the control contact is opened, the set interval \mathbf{t} begins (green LED flashes). After the interval thas expired (green LED illuminated) the output relay switches into off-position (yellow LED not illuminated). If the control contact is closed again before the interval \mathbf{t} has expired, the interval already expired is erased and is restarted with the next cycle.

Es20	ON delay with control contact "S"
	The supply voltage \mathbf{U} must be constantly applied to the device (green LED illuminated). When the control contact $\mathbf{Y 1} \mathbf{- Y 2}$ is closed, the set interval t begins (green LED flashes). After the interval \mathbf{t} has expired (green LED illuminated) the output relay \mathbf{R} switches into on-position (yellow LED illuminated). This status remains until the control contact is opened again. If the control contact is opened before the interval \mathbf{t} has expired, the interval already expired is erased and is restarted with the next cycle.

WU20	Single shot leading edge voltage controlledWhen the supply voltage \mathbf{U} is applied, the output relay \mathbf{R} switches into on-position (yellow LED illuminated) and the set interval \boldsymbol{t} begins (green LED flashes). After the interval \mathbf{t} has expired (green LED illuminated) the output relay switches into off-position (yellow LED not illuminated). This status remains until the supply voltage is interrupted. If the supply voltage is interrupted before the interval thas expired, the output relay switches into off-position. The interval already expired is erased and is restarted when the supply voltage is next applied.

Timer Relays

Timer Relays Series ZR6

- Modes (Part 2)

Detailed Description of Modes (Part 2)

The internal potentiometer is deactivated when a remote potentiometer is connected! The function has to be set before connecting the relay to the supply voltage.

Ws 11	Single shot leading edge with control contact "S"
	The supply voltage \mathbf{U} must be constantly applied to the device (green LED illuminated). When the control contact Y1-Y2 is closed, both contacts switch into on-position (yellow LED illuminated) and the set interval \dagger begins (green LED flashes). After the interval \boldsymbol{t} has expired (green LED illuminated) the delayed contact switches into off-position (yellow LED not illuminated). The instantaneous contact remains in on-position, until the control contact is opened again. During the interval, the control contact (and the instantaneous contact) can be operated any number of times. A further cycle can only be started when the cycle run has been completed.

	Single shot leading edge with control contact "S"
	The supply voltage U must be constantly applied to the device (green LED illuminated). When the control contact Y 1-Y2 is closed, the output relay \mathbf{R} switches into on-position (yellow LED illuminated) and the set interval \mathbf{t} begins (green LED flashes). After the interval \mathbf{t} has expired (green LED illuminated) the output relay switches into off-position (yellow LED not illuminated). During the interval, the control contact can be operated any number of times. A further cycle can only be started when the cycle run has been completed.

Single shot trailing edge with control contact "S"

The supply voltage \mathbf{U} must be constantly applied to the device (green LED illuminated). When the control contact $\mathbf{Y 1} \mathbf{- Y 2}$ is closed the instantaneous contact switches into on-position. When the control contact is opened, the instantaneous contact switches into off-position, the delayed contact
Wall switches into on-position (yellow LED illuminated) and the set interval t begins (green LED flashes). After the interval \boldsymbol{t} has expired (green LED illuminated), the delayed contact switches into off-position (yellow LED not illuminated). During the interval, the control contact (and the instantaneous contact) can be operated any number of times. A further cycle can only be started when the cycle run has been completed.

$\mathbf{W a 2 O}$	Sin Th illu co ou in LED ill nu be

Single shot trailing edge with control contact " S "

The supply voltage \mathbf{U} must be constantly applied to the device (green LED illuminated). Closing the control contact $\mathbf{Y 1 - Y 2}$ has no influence on the condition of the output relay \mathbf{R}. When the control contact is opened, the output relay switches into on-position (yellow LED illuminated) and the set interval \boldsymbol{t} begins (green LED flashes). After the interval \boldsymbol{t} has expired (green LED illuminated), the output relay switches into off-position (yellow LED not illuminated). During the interval, the control contact can be operated any number of times. A further cycle can only be started when the cycle run has been completed.

Flasher pulse first

When the supply voltage \mathbf{U} is applied, the instantaneous contact and the delayed contact switch into on-position (yellow LED illuminated) and the set interval \mathbf{t} begins (green LED flashes). After the interval \boldsymbol{t} has expired, the delayed contact switches into off-position (yellow LED not illuminated) and the set interval \boldsymbol{t} begins again. The delayed contact is triggered at a ratio of 1:1 until the supply voltage is interrupted.

Flasher pause first

When the supply voltage \mathbf{U} is applied, the instantaneous contact switches into on-position and the set interval \boldsymbol{t} begins (green LED flashes). After the interval \mathbf{t} has expired, the delayed contact switches into on-position (yellow LED illuminated) and the set interval \boldsymbol{t} begins again. After the interval $\boldsymbol{\dagger}$ has expired, the delayed contact switches into off-position (yellow LED not illuminated). The delayed contact is triggered at a ratio of 1:1 until the supply voltage is interrupted.

> | Flasher pulse first |
| :--- |
| When the supply voltage \mathbf{U} is applied, the output relay \mathbf{R} switches into |
| on-position (yellow LED illuminated) and the set interval $\boldsymbol{\leftarrow}$ begins (green |
| LED flashes). After the interval \mathbf{t} has expired, the output relay switches into |
| off-position (yellow LED not illuminated) and the set interval \mathbf{t} begins again. |
| The output relay is triggered at a ratio of $1: 1$ until the supply voltage is |
| interrupted. |

Bp20	Flasher pause first
	When the supply voltage \mathbf{U} is applied, the set interval \mathbf{t} begins (green LED flashes). After the interval \mathbf{t} has expired, the output relay \mathbf{R} switches into onposition (yellow LED illuminated) and the set interval \boldsymbol{t} begins again. After the interval \mathbf{t} has expired, the output relay switches into off-position (yellow LED not illuminated). The output relay is triggered at a ratio of $1: 1$ until the supply voltage is interrupted.

- Timer Relays Series ZR6
- Technical Data

INDICATORS	Green LED U/ヶ ON		Indication of supply voltage
	Green LED U/ヶ flashes		Indication of time period
	Yellow LED R ON/OFF		Indication of relay output
MECHANICAL DESIGN	Housing		Self-extinguishing plastic housing
	IP rating housing		IP40
	Mounting	(EN 60715)	DIN-rail TS 35
	Terminal	(VBG 4, PZ1 required)	Shockproof terminal connection
	IP rating terminal		IP20
	Mounting position		Any
	Tightening torque		Max. 1 Nm
	Terminal capacity		1×0.5 to $2.5 \mathrm{~mm}^{2}$ with/without multicore cable end $1 \times 4 \mathrm{~mm}^{2}$ without multicore cable end 2×0.5 to $1.5 \mathrm{~mm}^{2}$ with/ without multicore cable end $2 \times 2.5 \mathrm{~mm}^{2}$ flexible without multicore cable end
INPUT CIRCUIT	Input		Terminals A1-A2 (galvanically separated)
	Supply voltage	AC/DC	24 V to 240 V ~
	Tolerance	24 to 240 V DC	-20% to +25\%
		24 to 240 V AC	-15\% to +10 \%
	Rated frequency	48 to 400 Hz	24 to $240 \mathrm{~V} \sim$
		16 to 48 Hz	48 to 240 V ~
	Rated consumption		$2.5 \mathrm{VA}(1 \mathrm{~W})$
	Duration of operation		100 \%
	Reset time		500 ms
	Wave form	For AC	Sinus
	Residual ripple	For DC	10 \%
	Drop-out voltage		> 15% of the supply voltage
	Overvoltage category	(IEC 60664-1)	III
	Rated surge voltage		4 kV
OUTPUT CIRCUIT	Number of contacts and type		2 potential free CO contacts
	Rated voltage		250 V AC
	Switching capacity	(distance $<5 \mathrm{~mm}$)	750 VA (3 A / 250 V)
		(distance $>5 \mathrm{~mm}$)	1250 VA (5A / $250 \mathrm{~V} \sim 1$
	Fusing		5 A fast acting
	Mechanical service life		20×10^{6} operations
	Electrical service life		2×10^{5} operations at 1000VA resistive load
	Switching capacity	(IEC 60947-5-1)	Max. 60 / min at 100 VA resistive load, Max. 6 / min at 1000 VA resistive load
	Overvoltage category	(IEC 60664-1)	III
	Rated surge voltage		4 kV
CONTROL CONTACT	Activation		Bridge Y1-Y2
	Potential free		Yes, basic isolation against input and output circuit
	Loadable		No
	Control voltage	Max.	5 V
	Short circuit current	Max.	1 mA
	Line length	Max.	10 m
	Control pulse length	Min.	50 ms
REMOTE POTENTIOMETER	(not included)		The internal potentiometer is de-activated when a remote potentiometer is connected!
	Connections		$1 \mathrm{M} \Omega$ potentiometer, terminals Z1-Y2
	Line type		Twisted pair
	Control voltage	Max.	5 V
	Short circuit current	Max.	$\mu \mathrm{A}$ range
	Line length	Max.	5 m
ACCURACY	Base accuracy		$\pm 1 \%$ (of maximum scale value) using $1 \mathrm{M} \Omega$ remote potentiometer
	Frequency response		-
	Adjustment accuracy		$<5 \%$ (of maximum scale value) using $1 \mathrm{M} \Omega$ remote potentiometer
	Repetition accuracy		$<0.5 \%$ or $\pm 5 \mathrm{~ms}$
	Temperature influence		$\leq 0,01 \% /{ }^{\circ} \mathrm{C}$
AMBIENT CONDITIONS	Ambient temperature	$\begin{gathered} \text { (IEC 60068-1) } \\ \text { (UL 508) } \end{gathered}$	$\begin{aligned} & -25^{\circ} \mathrm{C} \text { to }+55^{\circ} \mathrm{C} \\ & -25^{\circ} \mathrm{C} \text { to }+40^{\circ} \mathrm{C} \\ & \hline \end{aligned}$
	Storage temperature		$-25^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
	Transport temperature		$-25^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
	Relative humidity	(IEC 60721-3-3 class 3K3)	15% to 85%
	Pollution degree	(IEC 60664-1)	3
	Vibration resistance	(IEC 60068-2-6)	10 to $55 \mathrm{~Hz}, 0.35 \mathrm{~mm}$
	Shock resistance	(IEC 60068-2-27)	$15 \mathrm{~g}, 11 \mathrm{~ms}$

*The potentiometer is used for remote setting of the time. Here, the internal potentiometer (knob for fine adjustment of the time) is automatically disabled. The nominal value of the potentiometer is $1 \mathrm{M} \Omega$. At a value approximately $>1.6 \mathrm{M} \Omega$ at this input the time fine-tuning is again determined by the internal potentiometer.

DESCRIPTION	AVAILABLE
Multi-function Relays	
Timer multifunction $12-240 \mathrm{VAC} / \mathrm{DC}, 2 \mathrm{CO}, 8 \mathrm{~A} / 250 \mathrm{~V}$	$-\infty 00=0$

Multi-function Relays

Measuring and Monitoring Relays

Measuring and Monitoring Relays Series UR5
Measuring and Monitoring Relays Series AMPARO

\square Measuring and Monitoring Relays Series UR6

Relay Module

Summary Alarm Indicators
Diode Combination DBS

Measuring and Monitoring Relays

Index
Measuring and Monitoring Relays Series UR5 Page 122
Measuring and Monitoring Relays Series AMPARO Page 132
Measuring and Monitoring Relays Series UR6 Page 137
Relay Module Page 150
Summary Alarm Indicators Page 152
Diode Combination DBS Page 154

Measuring and Monitoring Relays

Measuring and Monitoring Relays Series UR5

Schrack-Info

UR5U1011

- Voltage monitoring for AC and DC in 1-phase networks
- Undervoltage monitoring
- 1 CO
- Component width 17.5 mm
- In-line design

UR5U3011

- 3-phase voltage monitoring
- Undervoltage monitoring
- Supply voltage $=$ measured voltage
- 1 CO
- Component width 17.5 mm
- In-line design

UR5U3N 11

- 3-phase undervoltage monitoring
- Fixed switching threshold US and fixed hysteresis
- 1 CO
- Component width 17.5 mm
- In-line design

UR5I1011

- AC monitoring in 1-phase networks
- 1 CO
- Component width 17.5 mm
- In-line design

UR5P3011

- Phase sequence, phase failure and phase imbalance monitoring
- 1 floating CO (output relay)
- Component width 17.5 mm
- In-line design

UR5R 1021

- Tripping unit for motor winding temperature monitoring with or without short-circuit monitoring of the thermistor circuit (selectable with terminal bridges)
- Optional reading of a temperature sensor
- Test functionality with integrated Reset switch
- Max. rated insulation voltage sensor circuit up to 690 V
- 1 CO
- Component width 35 mm
- In-line design

UR5L1021

- Filling level monitoring of conductive liquids
- Multiple modes
- Safe disconnection of measuring circuits
- 1 CO
- Component width 35 mm
- In-line design

Measuring and Monitoring Relays Series UR5

- Overview Modes

Article number	Functions
UR5U1011	AC/DC under voltage monitoring in 1-phase mains with adjustable threshold and hysteresis. UNDER = Under voltage monitoring
UR5U3011	Undervoltage monitoring in 3-phase mains (each phase against the neutral wire) with fixed or adjustable threshold voltage US and fixed hysteresis.
UR5U3N11	Undervoltage monitoring in 3-phase mains (each phase against the neutral wire) with fixed threshold voltage US and fixed hysteresis.
UR5I1011	AC current monitoring in 1-phase mains with adjustable threshold and
fixed hysteresis.	

Dimensions (mm)

Measuring and Monitoring Relays

- Measuring and Monitoring Relays Series UR5
- Time Ranges

Article number		Adjustment range
UR5U1011	Tripping delay (delay):	-
UR5U3011	Tripping delay:	fixed approx. 200 ms
UR5U3N11	Tripping delay: Threshold Us:	fixed approx. 200 ms fixed, 195.5 V (L N)
UR511011	Tripping delay (delay):	-
UR5P3011	Tripping delay:	(L N)
UR5R 1021	Start-up suppression time (start): Trippprox. 100 ms UR5L1021	Tripping delay (delay): Turn-off delay (delay ON):

Circuit Diagrams

Circuit Diagrams

A	Monitoring temperature sensors
B	Monitoring thermal contact
C	Reset
D	Probe max.
E	Probe min.
F	Mass probe

Measuring and Monitoring Relays Series UR5
Modes

Measuring and Monitoring Relays

Measuring and Monitoring Relays Series UR5

Detailed Description of Modes (Part 1)

UR5U1011	The supply voltage \mathbf{U} must be constantly applied to the device (green LED illuminated). The output relay \mathbf{R} switches into on-position (yellow LED illuminated) when the measured voltage \mathbf{U} exceeds the value adjusted at the Us regulator. The output relay \mathbf{R} switches into off-position (yellow LED not illuminated) when the measured value for the voltage falls below the set value by more than the fixed hysteresis.

UR5U3011	Under voltage monitoring for 3-phase AC mains with variable threshold voltage Us and fixed hysteresis. All measuring inputs (LI, L2 and L3) must be connected to phase voltage. If single or 2-phase monitoring is required, unused input terminals (L) must be connected to mains voltage to have proper L-N voltage on the terminals $\mathbf{L I}, \mathbf{L 2}$ and $\mathbf{L 3}$. A phase failure can not be detected, if the reverse voltage coming from the load exceeds the threshold US relay. Test function (optional) The test function enables a manually disconnection of the output relay. Under voltage monitoring The output relay \mathbf{R} switches into on-position (yellow LED illuminated), when the measuring voltage of all connected phases exceeds the fixed threshold US by more than the fixed hysteresis \mathbf{H}. When the voltage of one of the connected phases (LI, L2 or L3) falls below the fixed threshold, the output relay \mathbf{R} switches into off-position again (yellow LED not illuminated).

	Under voltage monitoring for 3-phase AC mains with fixed threshold voltage US and fixed hysteresis. All measuring inputs (L1, L2 and L3) must be connected to phase voltage. If single or 2-phase monitoringis required, unused input terminals (L) must be connected to mains voltage to have proper $\mathbf{L}-\mathbf{N}$ voltage on the terminals $\mathbf{L 1}, \mathbf{L 2}$ and $\mathbf{L 3}$. A phase failure can not be detected, if the reverse voltage coming from the load exceeds the threshold US relay. Test function (optional) The test function enables a manually disconnection of the output relay. Under voltage monitoring
UR5U3NII	
The output relay \mathbf{R} switches into on-position (yellow LED illuminated), when the measuring voltage of all connected phases exceeds the fixed threshold	
US by more than the fixed hysteresis \mathbf{H}. When the voltage of one of the connected phases (LI, L2 or L3) falls below the fixed threshold, the output relay \mathbf{R}	
switches into off-position again (yellow LED not illuminated).	

| The supply voltage \mathbf{U} must be constantly applied to the device (green LED illuminated). The output relay \mathbf{R} switches into on-position (yellow LED illuminated) when the
 measured current exceeds the value adjusted at the Is regulator. The output relay \mathbf{R} switches into off-position (yellow LED not illuminated) when the measured value
 for the current falls below the set value by more than the fixed hysteresis. |
| :--- | :--- |

UR5P3011	A	Phase sequence monitoring When all the phases are connected in the correct sequence and the measured asymmetry is less than the fixed value, the output relay switches into on-position (yellow LED illuminated). When the phase sequence changes, the output relay switches into off-position (yellow LED not illuminated).
	B	Phase failure monitoring The output relay \mathbf{R} switches into off-position (yellow LED not illuminated), when one of the three phases fails.
	C	Asymmetry monitoring The output relay \mathbf{R} switches into off-position (yellow LED not illuminated), when the asymmetry exceeds the value set at the ASYM-regulator. Reverse voltages of a consumer (e.g. a motor which continues to run on two phases only) do not effect the disconnection.

Temperature monitoring of the motor winding with fault latch

UR5R1021	If the sup motor) Pressin and th When into of The out a reset	Temperat ly voltage \mathbf{U} is applied (green LED illumina e output relay switches into on-position. he test/reset key under this conditions, force he switching function can be checked in cas cumulative resistance of the PTC-circuit exce sition (red LED illuminated). relay \mathbf{R} switches into on-position again (red LED (internal or external) was pressed or the supply
		Application of an external reset
		External reset
		Application of internal test/reset key
		Test/Reset
		LED Failure
		PTC (Positive Temperature Coefficient)

Measuring and Monitoring Relays Series UR5
Modes

Measuring and Monitoring Relays

Measuring and Monitoring Relays Series UR5

Detailed Description of Modes (Part 2)

Measuring and Monitoring Relays Series UR5

- Technical Data (Part 1)

			UR5U1011	UR5U3011	UR5U3N11	UR511011
INDICATORS	Green LED ON/OFF		Indication of supply voltage	-	-	Indication of supply voltage
	Green LED LI ON/OFF		-	Indication of supply voltage Ll - N	-	-
	Green LED L2 ON/OFF		-	Indication of supply voltage L2 - N	-	-
	Green LED L3 ON/OFF		-	Indication of supply voltage L3-N	-	-
	Yellow LED ON/OFF		Indication of relay output			
MECHANICAL DESIGN	Housing		Self-extinguishing plastic housing IP40			
	Degree of protection housing					
	Mounting	(EN 60715)	DIN-rail TS 35			
	Terminal	$\begin{aligned} & \hline \text { (VBG 4, PZ1 } \\ & \text { required) } \end{aligned}$	Shockproof terminal connection			
	Degree of protection terminal		IP20			
	Mounting position		Any			
	Tightening torque		Max. 1 Nm			
	Terminal capacity		1×0.5 to $2.5 \mathrm{~mm}^{2}$ with/without multicore cable end $1 \times 4 \mathrm{~mm}^{2}$ without multicore cable end 2×0.5 to $1.5 \mathrm{~mm}^{2}$ with/without multicore cable end $2 \times 2.5 \mathrm{~mm}^{2}$ flexible without multicore cable end			
INPUT CIRCUIT	Supply voltage		Measuring voltage			230 V
	Rated voltage U_{N}		$\begin{gathered} 24 \mathrm{VAC} / \mathrm{DC}, \\ 230 \mathrm{~V} \sim \end{gathered}$	3(N) $230 / 400 \mathrm{~V}$		
	Terminals		$\begin{array}{\|cc\|} \hline 230 \mathrm{~V} \sim & \mathrm{E}-\mathrm{F} 3 \\ & \mathrm{E}-\mathrm{F} 2 \\ 24 \mathrm{~V} \sim & (\text { distance } \\ & >5 \mathrm{~mm}) \end{array}$	N-L1-L2-L3		Li - N
	Tolerance		$\begin{gathered} -25 \% \text { to }+20 \% \\ \text { of } U_{N} \end{gathered}$	$\begin{gathered} -30 \% \text { to }+10 \% \\ \text { of } U_{N} \\ \hline \end{gathered}$	$\begin{gathered} -30 \% \text { to }+15 \% \\ \text { of } U_{N} \end{gathered}$	$\begin{gathered} -15 \% \text { to }+15 \% \\ \text { of } U_{N} \end{gathered}$
	Rated consumption		$230 \mathrm{~V} \sim$ 10 VA $(0.6 \mathrm{~W})$ $24 \mathrm{~V} \sim$ 1.3 VA 24 VDC $(0.8 \mathrm{~W})$	5 VA (0.6 W) 8 VA (0.8 W)	$5 \mathrm{VA}(0.6 \mathrm{~W})$	$5 \mathrm{VA}(0.8 \mathrm{~W})$
	Rated frequency		AC 48 to 63 Hz			
	Duration of operation		100\%			
	Reset time		500 ms			
	Wave form		AC / DC Sinus			Sinus
	Hold-up time					
	Drop-out voltage		$\begin{aligned} & \hline>60 \% \text { of } \\ & \text { supply } \\ & \text { voltage } \\ & \hline \end{aligned}$	Determined by undervoltage detection (see measured circuit)		$\begin{gathered} \hline>20 \% \text { of } \\ \text { supply } \\ \text { voltage } \end{gathered}$
	Overvoltage category (IEC 60664-1)		III			
	Rated surge voltage		4 kV			
OUTPUT CIRCUIT	Number of contacts and type		1 potential free CO			
	Rated voltage		$250 \mathrm{~V} \sim$			
	Switching capacity		1250 VA (5 A / 250 V)			
	Fusing		5 A fast acting			
	Mechanical service life		20×10^{6} operations			
	Electrical service life		2×10^{5} operations at 1000VA resistive load			
	Switching capacity (IEC 60947-5-1)		Max. 6 / min at 1000 VA resistive load			
	Overvoltage category (IEC 60664-1)		III			
	Rated surge voltage		4 kV			
MEASURING VOLTAGE	Measuring variable		$\begin{gathered} \hline \text { AC or DC Sinus, } \\ 48 \text { to } 63 \mathrm{~Hz} \\ \hline \end{gathered}$	AC Sinus, 48 to 63 Hz		
	Measuring input		Supply voltage	160-240 V~	Supply voltage	5A AC
	Terminals		$\begin{array}{\|cc} \hline 230 \mathrm{~V} \sim & \mathrm{E}-\mathrm{F3} \\ 24 \mathrm{~V} \sim & \mathrm{E}-\mathrm{F} 2^{*} \\ 24 \mathrm{VDC} & \mathrm{E}-\mathrm{Fl}(+) \\ \hline \end{array}$	N-L1-L2-L3		Li, Lk
	Overload capacity		120% of U_{N}	Determined by tolerance specified for supply voltage		$\begin{gathered} \hline 7 \mathrm{~A}(\text { ex } 5 \mathrm{~A}: \\ \text { distance } \\ >5 \mathrm{~mm}!\text {) } \\ \hline \end{gathered}$
	Starting current		-			$\begin{array}{ll} \hline 1 \mathrm{~s} & 40 \mathrm{~A} \\ 3 \mathrm{~s} & 20 \mathrm{~A} \\ \hline \end{array}$
	Input resistance		-			$10 \mathrm{~m} \Omega$
	Switching threshold Us		80-120\%	160-240 V	fix, 195.5 V (L - N)	$10-100 \%$ of I_{N}
	Hysteresis H		Fixed, 5\%	Approx. 5 \%		Fixed, 10 \%
	Overvoltage category	(IEC 60664-1)				
	Rated surge voltage		4 kV			

Measuring and Monitoring Relays

- Measuring and Monitoring Relays Series UR5

- Technical Data (Part 2)

			UR5U1011	UR5U3011	UR5U3NII	UR511011
ACCURACY	Base accuracy			< 5 \%	d value	
	Adjustment accuracy		$\pm 5 \%$ of rated value			$\pm 5 \%$ of rated value
	Repetition accuracy			<2\%	d value	
	Voltage influence					
	Temperature influence			≤ 0.	$1{ }^{\circ} \mathrm{C}$	
AMBIENT CONDITIONS	Ambient temperature	(IEC 60068-1)		-25°	$55^{\circ} \mathrm{C}$	
	Storage temperature			-25°	$70^{\circ} \mathrm{C}$	
	Transport temperature			-25°	$70^{\circ} \mathrm{C}$	
	Relative humidity	$\begin{gathered} \text { (IEC } 60721-3-3 \\ \text { class } 3 \mathrm{~K} 3) \\ \hline \end{gathered}$			5 \%	
	Pollution degree	(IEC 60664-1)		2		2, if built in 3
	Vibration resistance	(IEC 68-2-6)	$\begin{gathered} 10 \text { to } 55 \mathrm{~Hz}, 0.35 \\ \mathrm{~mm} \end{gathered}$			$\begin{gathered} 10 \text { to } 55 \mathrm{~Hz}, 0.35 \\ \mathrm{~mm} \\ \hline \end{gathered}$
	Shock resistance	(IEC 68-2-27)	$15 \mathrm{~g}, 11 \mathrm{~ms}$			$15 \mathrm{~g}, 11 \mathrm{~ms}$

*The distance between the devices must be greater than 5 mm !

- Technical Data (Part 3)

			UR5P3011	UR5R1021	UR5L1021
INDICATORS	Green LED ON/OFF		Indication of supply voltage		
	Yellow LED ON/OFF		Indication of relay output	-	Indication of relay output
	Red LED ON/OFF		-	Indication of failure	
MECHANICAL DESIGN	Housing Degree of protection housing		Self-extinguishing plastic housing IP40		
	Mounting	(EN 60715)	DIN-rail TS 35		
	Terminal	$\begin{gathered} \hline \text { (VBG 4, PZ } \\ \text { required) } \end{gathered}$	Shockproof terminal connection		
	Degree of protection terminal		IP20		
	Mounting position		Any		
	Tightening torque		Max. 1 Nm		
	Terminal capacity		1×0.5 to $2.5 \mathrm{~mm}^{2}$ with/without multicore cable end $1 \times 4 \mathrm{~mm}^{2}$ without multicore cable end 2×0.5 to $1.5 \mathrm{~mm}^{2}$ with/ without multicore cable end $2 \times 2.5 \mathrm{~mm}^{2}$ flexible without multicore cable end		
INPUT CIRCUIT	Supply voltage		Measured voltage	$230 \mathrm{~V} \sim$	
	Rated voltage U_{N}		3(N) $230 / 400 \mathrm{~V} \sim$	$230 \mathrm{~V} \sim$	
	Terminals		N-L1-L2-L3	A1-A2	
	Tolerance		-30% to $+30 \%$ of U_{N}	-15% to $+10 \%$ of U_{N}	
	Rated consumption		$8 \mathrm{VA}(0.8 \mathrm{~W})$	$1.3 \mathrm{VA}(1 \mathrm{~W})$	2 VA (1 W)
	Rated frequency		AC 48 to 63 Hz		
	Duty cycle		100%		
	Reset time		500 ms	250 ms	500 ms
	Residual ripple for DC		-	50 ms	-
	Drop out voltage		> 20% of the supply voltage	> 30% of the supply voltage	
	Overvoltage category	(IEC 60664-1)	III		
	Rated surge voltage		4 kV	6 kV	
OUTPUT CIRCUIT	Number of contacts and type		1 potential free CO		
	Rated voltage		$250 \mathrm{~V} \sim$		
	Terminals		-	11-12-14	-
	Switching capacity		1250 VA (5 A / $250 \mathrm{~V} \sim 1$	1250 VA AC1 B300/P300 (IEC 60947-5-1), therm. constant current 5 A	
	Fusing		5 A fast acting		
	Mechanical service life		15×10^{6} operations	20×10^{6} operations	
	Electrical service life		100×10^{3} operations at 1000 VA resistive load	2×10^{5} operations at 1000 VA resistive load	
	Switching frequency	(IEC 60947-5-1)	Max. 6 / min at 1000 VA resistive load		
	Overvoltage category	(IEC 60664-1)	III		
	Rated surge voltage		4 kV	6 kV	

Measuring and Monitoring Relays Series UR5

- Technical Data (Part 4)

*Note: The terminals R2-T2 are internal affiliated with each other!		
DESCRIPTION	AVAILABLE	ORDER NO.
Voltage Monitoring Relays		
Voltage monitoring relay, 1 phase, 1CO		UR5U1011
Voltage monitoring relay with adjustable voltage range 160-240V, 3-phase, 1CO		UR5U3011
Voltage monitoring relay, 3 phase against N , fixed $\mathrm{Us}_{s}=195.5 \mathrm{~V}, 1 \mathrm{CO}$		UR5U3N11
Current Monitoring Relays		
Current monitoring relay 1 phase, input 230V, 1 CO		UR511011
Phase Monitoring Relays		
Phase monitoring relay, 3 phase, 1CO	- $-\infty$	UR5P3011
Thermistor Monitoring Relays		
Thermistor monitoring relay, 1 phase, 1CO	- 0×0	UR5R1021
Level Monitoring Relays		
Level monitoring relay, 1 phase, 1CO		UR5L1021

Measuring and Monitoring Relays

Measuring and Monitoring Relays Series AMPARO

- Supply voltage $230 / 400 \mathrm{~V}$
- Supply circuit = measuring circuit
- Neutral conductor is required
- Component width 17.5 mm

URAU3N11

- 1- and 3-phase undervoltage monitoring with fixed switching threshold
- $1 \mathrm{CO}, 5 \mathrm{~A}$
- Supply voltage $230 / 400 \mathrm{~V}$
- Supply circuit $=$ measuring circuit
- Neutral conductor is required
- Component width 17.5 mm

URAP3011

- Phase sequence and phase failure monitoring
- Fixed phase imbalance monitoring
- Supply voltage $230 / 400$ V
- Neutral conductor is required
- Component width 17.5 mm

Dimensions (mm)

Circuit Diagrams

Measuring and Monitoring Relays Series AMPARO

- Configuration \& Functionalities

Configuration \& Settings

$\mathbf{1}$	URAU3011 and URAU3N11
	Status indication
	LED yellow
= Relay is active	

$\mathbf{2}$	URAP3011	
	Status indication	
	U	LED green = Supply voltage is applied
	LED yellow	
Relay is active		

Electrical connection	
L1-L2-L3-N	Supply and measuring voltage
	$3 \mathrm{~N} \sim 230 / 400 \mathrm{~V}, 50 / 60 \mathrm{~Hz}$
$11-12-14$	Output relay
	ACl $5 \mathrm{~A} / 250 \mathrm{~V}$

Measuring and Monitoring Relays

Measuring and Monitoring Relays Series AMPARO
Modes

Modes

URAU3011	
U	Undervoltage monitoring for 3-phase AC mains with variable threshold voltage Us and fixed hysteresis. All measuring inputs ($L 1, L 2$ and $L 3$) must be connected to phase voltage. If single-phase monitoring is required, unused input terminals (L) must be connected to mains voltage to have proper $\mathbf{L}-\mathbf{N}$ voltage on the terminals $\mathbf{L 1}, \mathbf{L} \mathbf{2}$ and $\mathbf{L 3}$. A phase failure can not be detected, if the reverse voltage coming from the load exceeds the threshold Us relay.
	Undervoltage monitoring
	The output relay \mathbf{R} switches into on-position (yellow LED illuminated), when the measuring voltage of all connected phases exceeds the fixed threshold Us by more than the fixed hysteresis \mathbf{H}. When the voltage of one of the connected phases (L1, L2 or L3) falls below the fixed threshold, the output relay \mathbf{R} switches into off-position again (yellow LED not illuminated).
	\#1 Hysteresis

URAU3N11	
U	Undervoltage monitoring for 3-phase AC mains with fixed threshold voltage Us ($=195.5 \mathrm{~V}$) and fixed hysteresis. All measuring inputs ($\mathrm{L} 1, \mathrm{~L} 2$ and L 3) must be connected to phase voltage. If single-phase monitoring is required, unused input terminals (L) must be connected to mains voltage to have proper $\mathbf{L - N}$ voltage on the terminals L1, $\mathbf{L 2}$ and $\mathbf{L 3}$. A phase failure can not be detected, if the reverse voltage coming from the load exceeds the threshold Us relay.
	Undervoltage monitoring
	The output relay \mathbf{R} switches into on-position (yellow LED illuminated), when the measuring voltage of all connected phases exceeds the fixed threshold Us by more than the fixed hysteresis \mathbf{H}. When the voltage of one of the connected phases (L1, L2 or L3) falls below the fixed threshold, the output relay \mathbf{R} switches into off-position again (yellow LED not illuminated).
	\#1 Hysteresis

URAP3011	
PS	Monitoring of phase sequenceWhen all the phases are connected in the correct sequence and the measured asymmetry is less than the fixed value, the output relay \mathbf{R} switches into on-position. When the phase sequence changes, the output relay \mathbf{R} switches into off-position.
	Phase failure monitoring
	The output relay \mathbf{R} switches into off-position, when one of the three phases fails.

Measuring and Monitoring Relays Series AMPARO

- Technical Data

			URAU3011	URAU3NII	URAP3011
INPUT CIRCUIT	Terminals		L1-L2-L3-N		
	Supply voltage		$230 / 400 \mathrm{~V}$		
	Tolerance		-30% to $+15 \%$ of U_{N}		
	Rated frequency		$50 / 60 \mathrm{~Hz}$		
	Duty cycle		100%		
	Bridging time		10 ms		
	Reset time		500 ms		
	Drop-out voltage		< 30 \%	According to switching threshold 0.85 of U_{N}	< 30 \%
	Power loss		0.8 W		
MEASURING CIRCUIT	Terminals		L1-L2-L3-N		
	Measure		Voltage 3-phase		
	Measurement methods		Rectified value		
	Monitoring functions		Undervoltage	Undervoltage	Phase sequence, phase failure, asymmetry
	Measuring range		$\mathrm{U}_{\mathrm{N}}=230 / 400 \mathrm{~V} \sim$		
	Overload		See tolerances of the supply voltage		
	Thresholds	Max.	-	-	-
		Min.	85% of U_{N}	85% of U_{N}	-
		Adjustable	Yes	No	No
		Asymmetry	-	-	Fixed, 30 \%
	Hysteresis		5%		-
TIME CIRCLES	ON delay Fixed		Approx. 400 ms		
	OFF delay		$<250 \mathrm{~ms}$		
INDICATION	Supply voltage	Green LED U ON			Indication of supply voltage
	Relay status	Yellow LED R ON		Relay is energized	
OUTPUT CIRCUIT	Number of contacts and type		1 CO		
	Terminals		11-12-14		
	Type		Relay		
	Contact material		AgNi		
	Rated voltage		250 V		
	Max. switching voltage		250 V		
	Max. switching current		5 A		
	Rated current		$5 \mathrm{~A} / 250 \mathrm{~V}$		
	Lifetime	Mechanical	1×10^{6} operations		
		Electrical (AC-1)		1×10^{5} operations	
	Switching frequency	With load	6/min		
		Without load	300 / min		
			5 A fast acting		
ACCURACY	Basic accuracy		< 5 \%		
	$\frac{\text { Basic accuracy }}{\text { Setting accuracy }}$		-		
	Repeatability		<2\%		
	Influence of temperature		$<0.05 \% /{ }^{\circ} \mathrm{C}$		
STANDARDS	Product standards		EN 61010-2-201:2013		
	Immunity EN 61326-1		Basic electromagnetic environment		
	Emission EN 61326-1		Class B		
DATAS OF INSULATION accord. to IEC 61010-2-201	Pollution degree		2		
	Overvoltage category		11		
	Rated insulation voltage Input circuit/ output circuit		300 V		
	Rated surge voltage Input circuit/ output circuit		2500 V		
	Insulation test voltage Input circuit/ output circuit		1500 V		
	Insulation Input circuit/ output circuit		Basic insulation		
ELECTRICAL CONNECTION	Terminal		Screw-terminal		
	Rated terminal capacity		$2.5 \mathrm{~mm}^{2}$		
	Max. terminal capacity	Flexible with/without ferrule	$1 \times 0.25 \ldots 2.5 \mathrm{~mm}^{2}$ (23 AWG...14AWG)		
		Flexible without sleeve	$2 \times 0.25 \ldots 1.5 \mathrm{~mm}^{2}$ (23 AWG...14AWG)		
		Flexible with twin-sleeve	$2 \times 0.25 \ldots 1.5 \mathrm{~mm}^{2}$ (23 AWG...14AWG)		
		Stranded without sleeve	1×0.2	$2.5 \mathrm{~mm}^{2}$ (23 AWG	14AWG)
	Length without insulation		7 mm		
	Tightening torque		Max. 0.5 Nm		
GENERAL DATA	Ambient temperature Operation		$-25 \ldots+50^{\circ} \mathrm{C}$		
	$\begin{array}{ll}\begin{array}{l}\text { Dimensions (DIN } \\ 43880 \text {) }\end{array} & \text { L×H×D }\end{array}$		$17.5 \times 97 \times 57.9 \mathrm{~mm}$		
	Mounting (EN 60715)		DIN-rail		
	Mounting position		Any		
	Degree of protection	Housing	IP40		
		Terminals	IP20		

Measuring and Monitoring Relays

Measuring and Monitoring Relays Series AMPARO

DESCRIPTION	AVAILABLE
Voltage Monitoring Relays	ORDER NO.
Voltage monitoring relay AMPARO with adjustable voltage range $160-240 \mathrm{~V}, 230 \mathrm{~V}-\mathrm{AC}, 3$ phase, $1 \mathrm{CO}, 5 \mathrm{~A} / 230 \mathrm{~V}$	
Voltage monitoring relay AMPARO, 230V-AC, with fixed switching threshold Us $=195.5 \mathrm{~V}, 3$ phase against $\mathrm{N}, 1 \mathrm{CO}, 5 \mathrm{~A} / 230 \mathrm{~V}$	
Phase Monitoring Relays	URAU3011
Phase monitoring relay AMPARO, 230V-AC, 3 phase, $1 \mathrm{CO}, 5 \mathrm{~A} / 230 \mathrm{~V}$	URAU3N11

Measuring and Monitoring Relays Series UR6

UR6I 1052

UR6P3052

- Voltage monitoring in 3-phase networks
- Phase sequence and phase failure monitoring
- Supply voltage = measured voltage
- Reverse voltage detection
- Neutral conductor connection optional
- 2 CO
- Component width 22.5 mm
- Industrial type design

UR6R 1052

- Motor winding temperature monitoring
- 2 CO
- Supply voltage 230 V AC
- Connection of external Reset switch possible
- Component width 22.5 mm
- Industrial type design

UR6L1052

- Multi-function monitoring relay
- Filling level monitoring of conductive liquids
- Safe disconnection of measuring circuits
- 2 CO
- Component width 22.5 mm
- Industrial type design

UR6U3052

- Multi-function monitoring relay
- Voltage monitoring in 3-phase networks
- Phase sequence and phase failure monitoring
- Phase imbalance monitoring can be activated/deactivated
- Neutral conductor connection optional
- Loss of neutral wire detection
- 2 CO
- Zoom voltage 24 to 240 V AC/DC
- Component width 22.5 mm
- Industrial type design

UR6I1052

- Multi-function monitoring relay
- Current monitoring for AC and DC in 1-phase networks
- Error memory
- 16.6 to 400 Hz
- 2 CO
- Zoom voltage 24 to 240 V AC/DC
- Component width 22.5 mm
- Industrial type design

Measuring and Monitoring Relays

Measuring and Monitoring Relays Series UR6

- Technical Data (Part 1)

Measuring and Monitoring Relays Series UR6

- Technical Data (Part 2)

			UR6U1052	UR6U3052	UR611052
MEASURING CIRCUIT	Fusing	(UL 508)	Max. 20 A		
	Measured variable		$\begin{gathered} \hline \text { DC or AC Sinus } \\ (16.6 \text { to } 400 \mathrm{~Hz}) \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { AC Sinus (48 to } 63 \\ \mathrm{~Hz} \text {) } \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { DC or AC Sinus } \\ (16.6 \text { to } 400 \mathrm{~Hz}) \\ \hline \end{gathered}$
	Input		30 V Terminals AC/DC $\mathrm{E}-\mathrm{F} 1(+)$ 60 V Terminals AC/DC $\mathrm{E}-\mathrm{F} 2(+)$ 300 V Terminals AC/DC $\mathrm{E}-\mathrm{F} 3(+)$	$3(\mathrm{~N}) \sim \begin{gathered} \text { Terminals } \\ (\mathrm{N}) \mathrm{L1}-\mathrm{LQ} \\ -\mathrm{L} 3 \end{gathered}$	2 mA Terminals AC/DC $\mathrm{K}-11(+1$ 1 A Terminals AC/DC $\mathrm{K}-12(+1$ 5 A Terminals AC/DC $\mathrm{K}-13(+)$
	Overload capacity		30 V $100 \mathrm{~V}_{\mathrm{ms}}$ $A C / D C$ 60 V $150 \mathrm{~V}_{\mathrm{rms}}$ AC/DC 300 V AC/DC $440 \mathrm{~V}_{\mathrm{rms}}$	3 (N)~ 3 (N)~	20 mA 250 mA $\mathrm{AC} / \mathrm{DC}$ 1 A $\mathrm{AC} / \mathrm{DC}$ 3 A 5 A $\mathrm{AC} / \mathrm{DC}$ 10 A
	Input resistance		30 V 47Ω AC/DC 60 V AC/DC 100Ω 300 V AC/DC 470Ω	$3(\mathrm{~N}) \sim 1 \mathrm{M} \Omega$	20 mA 2.7Ω $\mathrm{AC} / \mathrm{DC}$ 1 A $\mathrm{AC} / \mathrm{DC}$ $47 \mathrm{~m} \Omega$ 5 A $\mathrm{AC} / \mathrm{DC}$ $10 \mathrm{~m} \Omega$
	Switching threshold	Max. Min.	10% to 100% of U_{N} $5 \% \text { to } 95 \% \text { of } U_{N}$	$\begin{aligned} & -20 \% \text { to }+30 \% \text { of } U_{N} \\ & -30 \% \text { to }+20 \% \text { of } U_{N} \end{aligned}$	10% to 100% of I_{N} $5 \% \text { to } 95 \% \text { of } I_{N}$
	Asymmetry		-	5% to 25 \%	-
	Overvoltage category	(IEC 60664-1)		III	
	Rated surge voltage			4 kV	
ACCURACY	Base accuracy		$\leq 3 \%$ (of maximum scale value)		
	Frequency response		$\begin{gathered} -10 \% \text { to } 5 \%(16.6 \text { to } \\ 400 \mathrm{~Hz}) \\ \hline \end{gathered}$	-	$\begin{gathered} -10 \% \text { to } 5 \%(16.6 \text { to } \\ 400 \mathrm{~Hz}) \\ \hline \end{gathered}$
	Adjustment accuracy		$\leq 5 \%$ (of maximum scale value)		
	Repetition accuracy		$\leq 2 \%$		
	Voltage influence		-		
	Temperature influence		$\leq 0.05 \% /{ }^{\circ} \mathrm{C}$		
AMBIENT CONDITIONS	Ambient temperature	$\begin{aligned} & (\text { IEC 60068-1) } \\ & \text { (UL 508) } \end{aligned}$	$\begin{aligned} & -25^{\circ} \mathrm{C} \text { to }+55^{\circ} \mathrm{C} \\ & -25^{\circ} \mathrm{C} \text { to }+40^{\circ} \mathrm{C} \end{aligned}$		
	Storage temperature		$-25^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$		
	Transport temperature		$-25^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$		
	Relative humidity	(IEC 721-3-3 class 3K3)	15% to 85%		
	Pollution degree	(IEC 60664-1)	3		
	Vibration resistance	(IEC 60068-2-6)	$\begin{array}{cc} \hline 10 \text { to } 55 \\ \mathrm{~Hz} \end{array} \quad 0.35 \mathrm{~mm}$		
	Shock resistance	(IEC 60068-2-27)	$15 \mathrm{~g} \quad 11 \mathrm{~ms}$		

Measuring and Monitoring Relays

Measuring and Monitoring Relays Series UR6

- Technical Data (Part 3)

		UR6P3052	UR6R1052	UR6L1052
INDICATORS	Green LED ON	Indication of supply voltage		
	Yellow LED ON/OFF	Indication of relay output	-	Indication of relay output
	Red LED ON/OFF	-	Indication of failure	-
MECHANICAL DESIGN	Housing	Self-extinguishing plastic housing IP40		
	Degree of protection housing			
	Mounting (EN 60715)	DIN-rail TS 35		
	Terminal (VBG 4, PZ1 required)	Shockproof terminal connection IP20		
	Degree of protection terminal			
	Mounting position	Any		
	Tightening torque	Max. 1 Nm		
	Terminal capacity	1×0.5 to $2.5 \mathrm{~mm}^{2}$ with/without multicore cable end $1 \times 4 \mathrm{~mm}^{2}$ without multicore cable end 2×0.5 to $1.5 \mathrm{~mm}^{2}$ with/without multicore cable end $2 \times 2.5 \mathrm{~mm}^{2}$ flexible without multicore cable end		
INPUT CIRCUIT	Terminals	(N) L1-L2-L3 [= measuring voltage]	A1-A2 (galvanically separated)	A1-A2
	Supply voltage	3 (N) $230 / 400$ V AC	230 V AC	
	$\begin{array}{cc}230 \mathrm{~V} \mathrm{AC} \\ \text { Tolerance } & 3(\mathrm{~N}) \sim 230 / 400 \mathrm{~V} \mathrm{AC}\end{array}$	3 (N) ~ 342 to 457 V	$-15 \% \text { to }+15 \%$	
	Rated consumption	9 VA	2 VA (1.5 W)	
	Rated frequency	$50 / 60 \mathrm{~Hz}$		
	Duration of operation	100\%		
	Reset time	500 ms		
	Wave form for AC	-		
	Residual ripple for DC	-		
	Drop-out voltage	> 20% of the supply voltage	$>15 \%$ of the supply voltage	$>30 \%$ of the supply voltage
	Overvoltage category (IEC 60664-1)	III		
	Rated surge voltage	4 kV		
OUTPUT CIRCUIT	Number of contacts and type	2 potential free CO contacts		
	Rated voltage AC	$250 \mathrm{~V} \sim$		
	Switching capacity \quadDistance between the devices is $<5 \mathrm{~mm}$ Distance between the devices is $>$ $>5 \mathrm{~mm}$	750 VA (3 A / 250 V)		
	Fusing	5 A fast acting		
	Mechanical service life	20×10^{6} operations		
	Electrical service life	2×10^{5} operations at 1000 VA resistive load		
	Switching frequency (IEC 60947-5-1)	Max. 60 / min at 100 VA resistive load		
	Overvoltage category (IEC 60664-1)	III		
	Rated surge voltage	4 kV		

Measuring and Monitoring Relays Series UR6

- Technical Data (Part 4)

Measuring and Monitoring Relays

Measuring and Monitoring Relays Series UR6

- Overview Modes

UR6U1052	AC/DC voltage monitoring in 1 -phase mains with adjustable thresholds, timing for start-up suppression and tripping delay separately adjustable as well as the following functions (selectable by means of rotary switch):	
	OVER	Overvoltage monitoring
	OVER + LATCH	Overvoltage monitoring with fault latch
	UNDER	Undervoltage monitoring
	UNDER + LATCH	Undervoltage monitoring with fault latch
	WIN	Monitoring the window between "Min." with "Max."
	WIN + LATCH	Monitoring the window between "Min." with "Max." with fault latch

UR6U3052	Voltage monitoring in 3-phase mains with adjustable thresholds, adjustable tripping delay, monitoring of phase sequence and phase failure, monitoring of asymmetry with adjustable threshold as well as the following functions (selectable by means of rotary switch):	
	UNDER	Undervoltage monitoring
	UNDER + SEQ	Undervoltage monitoring and monitoring of phase sequence
	WIN	Monitoring the window between "Min." and "Max."
	WIN + SEQ	Monitoring the window between "Min." and "Max." and monitoring of phase sequence

UR611052	AC/DC current monitoring in 1-phase mains with adjustable thresholds, timing for start-up suppression and tripping delay separately adjustable as well as the following functions (selectable by means of rotary switch):	
	OVER	Overcurrent monitoring
	OVER + LATCH	Overcurrent monitoring with fault latch
	UNDER	Undercurrent monitoring
	UNDER + LATCH	Undercurrent monitoring with fault latch
	WIN	Monitoring the window between "Min." and "Max."
	WIN + LATCH	Monitoring the window between "Min." and "Max." with fault latch

UR6P3052 \quad Monitoring of phase sequence, phase failure and detection of return voltage (by means of evaluating the asymmetry)

UR6R1052	Temperature monitoring of the motor winding (max. 6 PTC) with fault latch for temperature probes in accordance with DIN 44081 and test function with integrated test/reset key
UR6L1052	Level monitoring of conductive liquid, timing for tripping delay and turnoff delay separately adjustable as well as the following functions (selectable by means of rotary switch):
	PUMP UP Pump up or minimum monitoring
	PUMP DOWN Pump down or maximum monitoring

Dimensions (mm)

\square Time Ranges

Article number		Adjustment range	
UR6U1052	Start-up suppression time	0 s	10 s
	Tripping delay	0.1 s	10 s
UR6U3052	Start-up suppression time		
	Tripping delay	0.1 s	10 s
UR611052	Start-up suppression time	0 s	10 s
	Tripping delay	0.1 s	10 s
UR6P3052	Start-up suppression time	Fixed, max. 500 ms	
	Tripping delay		
UR6R1052	Start-up suppression time		
	Tripping delay	-	
UR6L1052	Tripping delay (DELAY ON)	0.5 s	10 s
	Turn-off delay (DELAY OFF)	0.5 s	10 s

Measuring and Monitoring Relays Series UR6

- Circuit Diagrams Overview

Overview Circuit Diagrams

UR6U1052	
A	Supply voltage 24 V AC / DC Range 30 V and fault latch
B	Supply voltage 230 V AC / DC Range 60 V and fault latch
C	Supply voltage 24 V AC / DC Range 300 V and fault latch

UR6I 1052	
F	Supply voltage 24 V AC / DC Range 20 mA and fault latch
G	Supply voltage 24 V AC / DC Range 5 A without fault latch
H	Supply voltage 230 V AC Range 1 A and fault latch

UR6U3052	
D	Supply voltage 24 V AC / DC
E	Supply voltage 230 V AC

UR6L1052	
$\mathbf{1 1}$	Probe max.
$\mathbf{1 2}$	Probe min.
$\mathbf{1 3}$	Mass probe

Measuring and Monitoring Relays

Measuring and Monitoring Relays Series UR6
UR6U 1052 Modes

Detailed Description of UR6U1052 Modes

Measuring and Monitoring Relays Series UR6

UR6U3052 Modes

Detailed Description of UR6U3052 Modes

Measuring and Monitoring Relays

Measuring and Monitoring Relays Series UR6

UR6I 1052 Modes

Detailed Description of UR6I 1052 Modes

Measuring and Monitoring Relays Series UR6

UR6P3052 Modes

Detailed Description of UR6P3052 Modes

UR6P3052	4.1	Phase sequence monitoring When all the phases are connected in the correct sequence and the measured asymmetry is less than the fixed value, the output relays switch into on-position (yellow LED illuminated). When the phase sequence changes, the output relays switch into off-position (yellow LED not illuminated).
	4.2	Phase failure monitoring When one of the three phases fails, the output relays switch into off-position (yellow LED not illuminated).
	4.3	Detection of reverse voltage (by means of evaluation of asymmetry) The output relays switch into off-position (yellow LED not illuminated) when the asymmetry between the phase voltages exceeds the fixed value of the asymmetry. An asymmetry caused by the reverse voltage of a consumer (e.g. a motor which continues to run on two phases only) does not effect the disconnection.

UR6R 1052 Modes

Detailed Description of UR6R 1052 Modes

UR6R1052	5.1 5.2	If the supply voltage \mathbf{U} is applied (green LED illuminated) and the cumulative resistance of the PTC-circuit* is less than $\mathbf{3 . 6 k} \boldsymbol{\Omega}$ (standard temperature of the motor), the output relays switch into on-position. Pressing the test/reset key under this conditions forces the output relays to switch into off-position. They remain in this state as long as the test/reset key is pressed and thus the switching function can be checked in case of fault. The test function is not effective using an external reset key. When the cumulative resistance of the PTC-circuit exceeds $\mathbf{3 . 6 k \Omega}$ (at least one of the PTCs has reached the cut-off temperature), the output relays switch into off-position (red LED illuminated). The output relays again switch into on-position (red LED not illuminated), if the cumulative resistance drops below $\mathbf{1 . 8 \mathbf { k } \Omega}$ by cooling down of the PTC and either a reset key (internal or external) was pressed or the supply voltage was disconnected and reapplied.

Measuring and Monitoring Relays

Measuring and Monitoring Relays Series UR6

UR6L1052 Modes

Detailed Description of UR6L1052 Modes

UR6L1052	PUMP UP	6.1	Pump up Connection of the probe rods E1, E2 and E3. Alternatively the electrically conducting container can be connected in lieu of the test probe E3. When the air-fluid level falls below the minimum probe E2 the set interval of tripping delay (Delay $\mathbf{O N}$) begins. After the expiration of the interval, the output relays \mathbf{R} switches into on-position (yellow LED illuminated). When the air-fluid level again rises above the maximum probe E1, the set interval of turn-off delay (Delay OFF) begins. After the expiration of the interval the output relays \mathbf{R} switches into off-position (yellow LED not illuminated).
	PUMP UP	6.2	Minimum monitoring (Pump up) Connection the probe rods E2 and E3 (bridge E1-E3). Alternatively the electrically conducting container can be connected in lieu of the test probe $\mathbf{E 3}$. When the air-fluid level falls below the probe $\mathbf{E 2}$ the set interval of tripping delay (Delay ON) begins. After the expiration of the interval, the output relays \mathbf{R} switches into on-position (yellow LED illuminated). When the air-fluid level again rises above the probe E2, the set interval of turn-off delay (Delay OFF) begins. After the expiration of the interval the output relays \mathbf{R} switches into off-position (yellow LED not illuminated).
	PUMP DOWN	6.3	Pump down Connection of the probe rods E1, E2 and E3. Alternatively the electrically conducting container can be connected in lieu of the test probe E3. When the maximum probe E1 gets moistened the set interval of tripping delay (Delay ON) begins. After the expiration of the interval the output relays \mathbf{R} switches into on-position (yellow LED illuminated). When the airfluid level falls below the minimum probe E2, the set interval of turn-off delay (Delay OFF) begins. After the expiration of the interval, the output relays \mathbf{R} switches into off-position (yellow LED not illuminated).
	PUMP DOWN	6.4	Maximum monitoring (Pump down) Connection of probe rods $\mathbf{E 2}$ and $\mathbf{E 3}$ (bridge E1-E3). Alternatively the electrically conducting container can be connected in lieu of the test probe E3. When the probe E2 gets moistened the set interval of tripping delay (Delay ON) begins. After the expiration of the interval the output relays \mathbf{R} switches into on-position (yellow LED illuminated). When the air-fluid level sinks below the probe E2, the set interval of turn-off delay (Delay OFF) begins. After the expiration of the interval the output relays \mathbf{R} switches into off-position (yellow LED not illuminated).
	Diagram	5	Level
		6	Probe El
		7	Probe E2
		8	Probe E3
		9	Delay ON
		10	Delay OFF

DESCRIPTION	AVAILABLE	ORDER NO.
Voltage Monitoring Relays		
Voltage monitoring relay, 1 phase, $\mathrm{AC} / \mathrm{DC}, 2 \mathrm{CO}$	[-000-9,	UR6U1052
Voltage monitoring relay, 3 phase, AC/DC, 2 CO	-000-9,	UR6U3052
Current Monitoring Relays		
Current monitoring relay, 1 phase, input 24-240V-AC/DC, 1 CO	-800-m	UR611052
Phase Monitoring Relays		
Phase monitoring relay, 3 phase, 2 CO	- + -000	UR6P3052
Thermistor Monitoring Relays		
Thermistor monitoring relay, 1 phase, 230V-AC, 2 CO	- 700×8	UR6R1052
Level Monitoring Relays		
Level monitoring relay, 1 phase, input 230V-AC/5A, 2 CO	-80\%-0,	UR6L1052

Accessories, Probes for Level Monitoring Relays

Schrack-Info

URL90010, URL90020, URL90030

- Maximum pressure range 1000 kPa
- Operating temperature up to $70^{\circ} \mathrm{C}$
- Coated with Nylon 66
- For use in all application, except for certain fields of the food processing industry where Nylon 66 is prohibited as insulating material

URL91010

- Probe element can be connected to cable

Dimensions URL90010 (mm)

Technical Data URL90010, URL90020 \& URL90030

Holder / Conductive probe	Material		Nylon
	Thread	Inch	1,5 British standard
	Degree of protection		IP65
	Max. temperature		$+70^{\circ} \mathrm{C}$
Conductor / Electrode rods	Material	Stainless steel	AISI 316
	Coating		Black powder epoxy
	Length		1 m
	Number of conductors	URL90010	$1 \times 1 \mathrm{metre}$ rod
		URL90020	2×1 metre rod
		URL90030	3×1 metre rod

Note: Coating of rods improves resistance to false switching caused by frothing of condensation.

DESCRIPTION	AVAILABLE	ORDER NO.
Level monitoring immersion probe	URL91010	
Level monitoring 1 probe, 1×1 meter	URL90010	
Level monitoring 2 probes, 2×1 meter	URL90020	
Level monitoring 3 probes, 3×1 meter	URL90030	

Relay Module

Relay PCB

\square Schrack-Info

- 8 pcs. relay module (24 V DC/8 A)
- Version with plug-in relay
- 2 CO per relay
- DC control voltage
- Negative control voltage
- LED operating lights
- Fast and easy DIN rail mounting

Dimensions (mm)

Circuit Diagram

Relay PCB

- Technical Data

8 relay module			
Number of contacts and type	8 channels each with 2 CO		
Rated current	8 A		
Supply voltage AC	$250 \mathrm{~V} \sim$		
Coil voltage DC	$24 \mathrm{~V}+10 \%$		
Coil current (1 channel)	$22 \mathrm{~mA}+10 \%$		
Turn ON time	15 ms		
Turn OFF time	10 ms		
Protection circuit	Damping- and protection diode		
LED colors	Yellow and green		
Contact material	AgNi		
Housing material	UL94V-0 plastic material		
Connection terminal Screw terminal	$2.5 \mathrm{~mm}^{2}$		
Degree of protection IEC 529, EN 60529	IP00		
Coil-/ contact isolation	$2.5 \mathrm{kVA} / 60 \mathrm{~s}$		
Isolation between output terminals \quad (open contacts)	$1 \mathrm{kVA} / 60 \mathrm{~s}$		
Overvoltage category	III		
Pollution degree	2		
Ambient temperature Operation	$-10^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$		
Approx. weight	ca. 419 g		
Reference standard	IEC 664-1, DIN VDE 0110.1		
Mounting	Vertical on DIN-rail		
DESCRIPTION		AVAILABLE	ORDER NO.
Relay module, 8 pcs. plug-in relays, 24 V DC/8A, each with 2CO, for DIN-rail		-00\%	IK022176

Summary Alarm Indicators

Summary Alarm Indicators SSM 11-24V-DC

- Contact monitoring with change over contact
- High reliability lighting
- Acoustic signalling
- Optical collective signalling
- Compatible with 11 pole plug-in socket YMR78700

Dimensions SSM 11 (mm)

Summary Alarm Indicators SSM 11-24V-DC

Dimensions YMR78700 (mm)

Circuit Diagram SSM 11

Technical Data

Rated voltage	$24 \mathrm{~V} \mathrm{DC}+20 \%$	
Contacts	Max.	$250 \mathrm{~V} \sim$
		8 A
Power consumption	Idle	ca. 1 VA
	In operation	ca. 4 VA

Assembly

DESCRIPTION	AVAILABLE	ORDER NO.
Indicator for Summary-alarm SSM 11-24V	YY494006	
DIN rail mounted plug-in socket for MT3 relays and timer relays Series ZR4, 11 pole, 10A (3 CO), with screw terminals, not compatible with function modules	YMR78700	

The Fault light (H4) will be on as long as there is one (or several) interruptions-regardless of whether the Acknowledge key has been pressed or not.

If the motor is not running, the light $(\mathbf{H} \mathbf{I})$ will be off; if the motor is running, the light will be on. In the event of faulty operation of the motor (\mathbf{F}) , the light will flash on-off.

Contact monitoring with Change Over Contact

During regular operation the light will be on (H2); in the event of an interruption, the light will flash on-off (H3).

High Reliability Lighting

To maintain the functionality of acoustic and optical collective signalling, connecting a parallel resistor is recommended (at 24 V , $2 \mathrm{~K} 2 \Omega / 1 / 2 W$)

> Acoustic Signalling In the event of an interruption, the horn will signal approx. 15 sec. afterwards (H5). It can be reset by pressing the Acknowledge (B4)
> key.

Diode Combination

Diode Combination DBS

YY494007

YY494107

YY494007

YY494007

Schrack-Info

- Despite their compact size the diode combinations DBS 10 (YY494007) and DBSO1 (YY494107) are suitable for up to 10 indicators. If there are light bulbs/glow lamps or LEDs for signalling operating states, integrating the diode combination can be a simple way to retrofit an alarm verification.
By connecting multiple combinations it is possible to scan any number of alarms. Every diode combinations contains a protective diode, which limits the impact of a defective individual diode on other components of the system (e.g. contactors). Both diode combinations DBS 10 and DBSO1 can be used as protection diodes for relays and contactors.
- The DBS 10 and DBSO1 have different polarities, which are explained in detail in the circuit diagrams
- Both types are compatible with the 11 pole plug-in socket YMR78700

Dimensions DBS 10 \& DBSO1 (mm)

Dimensions YMR78700 (mm)

Diode Combination DBS
Circuit Diagrams DBS 10 \& DBSO1

Technical Data

Rated voltage	Max.	$250 \mathrm{~V} \sim$
Peak voltage	$1000 \mathrm{~V} \sim$	
Current	Max.	1 A per single message
Peak current	Diode	1 A $/ 10 \mathrm{~ms}$
Input		1 N4007 (Pin 1)
Output	Group C	VDE 0110
Insulation class		$250 \mathrm{~V} \sim$
Assembly		11 -pole socket YMR78700

DESCRIPTION	AVAILABLE	ORDER NO.
Diode-combination DBS 10	- $+0 \times 0$	YY494007
Diode-combination DBSO1		YY494107
DIN rail mounted plug-in socket for MT3 relays and timer relays Series ZR4, 11 pole, 10A (3 CO), with screw terminals, not compatible with function modules	$+000-6$	YMR78700

Modular Contactors

Modular Contactors „R" AC-1, AC Coil

Modular Contactors „R" AC-1, AC Coil

Modular Contactors „R" AC-1, ACDC Coil Modular Contactors „R" AC-1, ACDC Coil

Modular Contactors

Index
Modular Contactors „R" AC-1, AC Coil Page 158
Modular Contactors „R" AC-1, ACDC Coil Page 161
Modular Contactors „Amparo" AC-1, AC Coil Page 163
Technical Specification. Page 165

Modular Contactors AC-1

- Modular Contactors "R" AC-1, AC Coil

Dimensions

1) 1 Module 2) 2 Modules
2) 0,5 Module

- Modular Contactors "R" AC-1, AC Coil

Circuit Diagrams

Modular Contactors AC-1

- Modular Contactors "R" AC-1, AC Coil

DESCRIPTION	TYPE NO.	AVAILABLE	ORDER NO.
24VAC coil voltage			
20A, 1NO / 24VAC 1 MW	R20-10		BZ326486
20A, 1NO+1 NC / 24VAC 1 MW	R20-11	[-000-9	BZ326421
20A, 2NO / 24VAC 1 MW	R20-20		BZ326453
20A, 1NO / 24VAC 1 MW	R20-02	- -1000	BZ326490
25A, 1NO+1NC / 24VAC 1 MW	R25-11		BZ326476
25A, 1NO+3NC / 24VAC 2 MW	R25-13		BZ326464
25A, 2NO / 24VAC 1 MW	R25-20	- -0×0	BZ326474
25A, 2NC / 24VAC 1 MW	R25-02		BZ326480
25A, 2NO+2NC / 24VAC 2 MW	R25-22	[-000-6	BZ326482
25A, 3NO+1NC / 24VAC 2 MW	R25-31	$+\infty=0$	BZ326462
25A, 4NO / 24VAC 2 MW	R25-40	- -0×0	BZ326460
25A, 4NC / 24VAC 2 MW	R25-04	$\begin{array}{r} -600 \\ \hline \end{array}$	BZ326483
40A, 2NO+2NC / 24VAC 3 MW	R40-22		BZ326488
40A, 3NO+1NC / 24VAC 3 MW	R40-31		BZ326487
40A, 4NO / 24VAC 3 MW	R40-40	-000-90000	BZ326443
40A, 4NC / 24VAC 3 MW	R40-04		BZ326489
63A, 2NO+2NC / 24VAC 3 MW	R63-22		BZ326456
63A, 3NO+1NC / 24VAC 3 MW	R63-31		BZ326455
63A, 4NO / 24VAC 3 MW	R63-40	-000-0.0	BZ326445
63A, 4NC / 24VAC 3 MW	R63-04		BZ326458
230VAC coil voltage			
20A, 1NO / 230VAC 1 MW	R20-10		BZ326471
20A, $1 \mathrm{NO}+1 \mathrm{NC} / 230 \mathrm{VAC} 1 \mathrm{MW}$	R20-11	-000-9,	BZ326438
20A, 2NO / 230VAC 1 MW	R20-20	-60\%-0,	BZ326437
20A, 2 NC / 230VAC 1 MW	R20-02	- -0×0	BZ326439
25A, 1NO / 230VAC 1 MW	R25-10	[-000-9,	BZ326473
25A, 1NO+1NC/230VAC 1 MW	R25-11	-000-0,	BZ326479
25A, 1NO+3NC / 230VAC 2 MW	R25-13	$+50 \div 0$	BZ326465
25A, 2NO / 230VAC 1 MW	R25-20	- -0×0	BZ326475
25A, 2NC / 230VAC 1 MW	R25-02	$+600-6$	BZ326481
25A, 2NO+2NC / 230VAC 2 MW	R25-22	-000-0,	BZ326472
25A, 3NO+1NC / 230VAC 2 MW	R25-31		BZ326463
25A, 4NO / 230VAC 2 MW	R25-40	[-000-9,	BZ326461
25A, 4NC / 230VAC 2 MW	R25-04	-000-m	BZ326467
40A, 2NO+2NC / 230VAC 3 MW	R40-22	-000-0,	BZ326466
40A, 3NO / 230VAC 3 MW	R40-30		BZ326468
40A, 3NO+1NC / 230VAC 3 MW	R40-31	-000-9,	BZ326454
40A, 4NO / 230VAC 3 MW	R40-40	$+\infty=0$	BZ326442
40A, 4NC / 230VAC 3 MW	R40-04		BZ326459
63A, 2NO+2NC / 230VAC 3 MW	R63-22	[-60-n	BZ326457
$63 \mathrm{~A}, 3 \mathrm{NO}+1 \mathrm{NC} / 230 \mathrm{VAC} 3 \mathrm{MW}$	R63-31	[-000-9,	BZ326452
63A, 4NO / 230VAC 3 MW	R63-40		BZ326444
63A, 4NC / 230VAC 3 MW	R63-04	$\begin{array}{rrr} \hline-50 & 0-8 \\ \hline \end{array}$	BZ326469
Accessories			
Auxiliary contact 1NO+1NC 3A 0.5 MW	RH11	-000-9,	BZ326470

Modular Contactors "R" AC-1, ACDC Coil

Dimensions

Modular Contactor AC-1

Modular Contactors "R" AC-1, ACDC Coil

C Circuit Diagrams

Connection Diagrams

Modular Contactors "Amparo" AC-1, AC Coil

Schrack-Info

- Modular Contactors, 2- or 4-pole
- AC-coil $24 \mathrm{VAC} 50 / 60 \mathrm{~Hz}, 230 \mathrm{VAC} 50 \mathrm{~Hz}$
- Operational current 20, 25, 40 and 63A
- Width of contactor 1, 2 or 3 MW
- Less hum
- 1 MW = approximately 17.5 mm

Dimensions

1) 1 Module
2) 2 Modules
3) 3 Modules

Modular Contactors AC-1

Modular Contactors "Amparo" AC-1, AC Coil

Circuit Diagrams
R20-11

Connection Diagrams

R25-40

R40-22

R40-40, R63-40

DESCRIPTION	TYPE NO.	AVAILABLE	ORDER NO.
24VAC coil voltage			
20A, 1NO+1 NC / 24VAC 1 MW	R20-11		BZ326421ME
20A, 2NO / 24VAC 1 MW	R20-20	$+50-\infty$	BZ326453ME
25A, 4NO / 24VAC 2 MW	R25-40		BZ326460ME
230VAC coil voltage			
20A, 2NO / 230VAC 1 MW	R20-20		BZ326437ME
20A, 1NO+1 NC / 230VAC 1 MW	R20-11	- $-\infty$	BZ326438ME
20A, 2 NC / 230VAC 1 MW	R20-02	- -00000	BZ326439ME
40A, 4NO / 230VAC 3 MW	R40-40	-000-m	BZ326442ME
63A, 4NO / 230VAC 3 MW	R63-40		BZ326444ME
25A, 4NO / 230VAC 2 MW	R25-40	$+\infty=0$	BZ326461 ME
25A, 3NO+1NC / 230VAC 2 MW	R25-31	- -00000	BZ326463ME
40A, 2NO+2NC / 230VAC 3 MW	R40-22	$+50-\infty$	BZ326466ME

Modular Contactors "R" AC-1, AC Coil

Lamp Type	Power W	Current A	Capacitors $\mu \mathrm{F}$	Max. lamps per pole at 230 V 50 Hz and max. $60^{\circ} \mathrm{C}$			
				R20..	R25..	R40..	R63..
Incandescent lamps	60	0,27	-	36	50	92	129
	100	0,45	-	21	30	55	77
	200	0,91	-	10	15	27	38
	300	1,36	-	7	10	19	26
	500	2,27	-	4	6	11	16
	1000	4,5	-	2	3	6	8
Fluorescent lamps	11	0,16	1,3	60	75	210	310
uncompensated or	18	0,37	2,7	25	30	90	140
serial compensated	24	0,35	2,5	25	30	90	140
	36	0,43	3,4	20	25	70	140
	58	0,67	5,3	14	17	45	70
	65	0,67	5,3	13	16	40	65
	85	0,8	5,3	11	14	35	60
Fluorescent lamps	11	0,07	-	2×100	2×110	2×220	2×250
dual-connection	18	0,11	-	2×50	2×55	2×130	2×200
	24	0,14	-	2×40	2×44	2×110	2×160
	36	0,22	-	2×30	2×33	2×70	2×100
	58	0,35	-	2×20	2×22	2×45	2×70
	65	0,35	-	2×15	2×16	2×40	2×60
	85	0,47	-	2×10	2×11	2×30	2×40
Fluorescent lamps	11	0,09	2	33	43	67	107
parallel compensated	18	0,13	2	25	32	50	80
	24	0,16	3	25	32	50	80
	36	0,27	4	22	32	50	80
	58	0,45	7	14	18	36	46
	65	0,5	7	14	18	36	46
	85	0,6	8	12	16	33	44
Fluorescent lamps	18	0,09	-	40	40	100	150
with electronic fluorescent	36	0,16	-	20	20	50	75
lamp ballast	58	0,25	-	15	15	30	55
	80	0,4	-	7	10	20	30
	2×18	0,17	-	20	20	50	60
	2×28	0,25	-	15	15	37	45
	2×36	0,32	-	10	10	25	30
	2×58	0,49	-	7	7	15	20
	2×80	0,7	-	4	4	8	10
Transformers	20	0,09	-	40	52	110	174
for metal halid	50	0,22	-	20	24	50	80
low voltage lamps	75	0,33	-	13	16	35	54
	100	0,43	-	10	12	27	43
	150	0,65	-	7	9	19	29
	200	0,87	-	5	5	14	23
	300	1,3	-	3	4	9	14
Mercury-vapour lamps	50	0,61	-	16	21	38	55
(high-pressure lamps)	80	0,8	-	12	16	28	40
uncompensated	125	1,15	-	8	11	20	28
e. g. HQL, HPL	250	2,15	-	4	6	11	15
	400	3,25	-	3	4	7	10
	700	5,4	-	1	2	4	6
	1000	7,5	-	1	1	3	4
Mercury-vapour lamps	50	0,28	7	7	18	36	50
(high-pressure lamps),	80	0,41	8	5	16	31	44
compensated	125	0,65	10	3	13	25	35
e. g. HQL, HPL	250	1,22	18	2	7	14	19
	400	1,95	25	1	5	10	14
	700	3,45	45	1	3	6	8
	1000	4,8	60	-	2	4	6

Technical Specification - Modular Contactors AC-1

Modular Contactors "R" AC-1, AC Coil

Lamp Type	Power W	Current A	Capacitors $\mu \mathrm{F}$	Max. lamps per pole at 230 V 50 Hz and max. $60^{\circ} \mathrm{C}$			
				R20..	R25..	R40..	R63..
Metal halide lamps	35	0,53	-	22	24	57	65
uncompensated	70	1	-	12	14	30	35
e. g. HQI, HPI, CDM	150	1,8	-	6	8	17	18
	250	3	-	4	5	10	12
	400	3,5	-	3	4	8	10
	1000	9,5	-	1	1	3	4
	2000	16,5	-	-	-	2	2
400 V per Pole	2000	10,5	-		-	-	2
	3500	18	-	-	-	1	1
Metal halide lamps compensated e. g. HQI, HPI, CDM	35	0,25	6	8	21	42	58
	70	0,45	12	4	11	21	29
	150	0,75	20	2	7	13	18
	250	1,5	33	1	4	9	11
	400	2,1	35	1	4	9	10
	1000	5,8	95	-	1	3	4
	2000	11,5	148	-	-	2	2
400V per Pole	2000	6,6	58	-	-	3	4
	3500	11,6	100	-	-	2	3
Metal halide lamps with electronic fluorescent with electronic fluorescent lamp ballast (e. g.: PCI) 50-125 x In lamp for 0,6ms	20	0,1	integrated	9	9	18	20
	28	0,15	integrated	-	-	-	18
	35	0,2	integrated	6	6	11	13
	70	0,36	integrated	5	5	10	12
	150	0,7	integrated	4	4	8	10
Sodium-vapour lamps (low pressure lamps), uncompensated	35	1,5	-	7	9	22	30
	55	1,5	-	7	9	22	30
	90	2,4	-	4	6	13	19
	135	3,3	-	3	4	10	14
	150	3,3	-	3	4	10	14
	180	3,3	-	3	4	10	14
	200	3,3	-	3	4	10	14
Sodium-vapour lamps (low pressure lamps), compensated	35	0,31	20	5	6	15	18
	55	0,42	20	5	6	15	18
	90	0,63	30	3	4	10	12
	135	0,94	45	2	3	7	8
	150	1	40	2	3	8	9
	180	1,16	40	2	3	8	9
	200	1,32	25	-	-	10	12
Sodium-vapour lamps (high pressure lamps), uncompensated	150	1,8	-	5	8	17	22
	250	3	-	4	5	10	13
	330	3,7	-	3	4	8	10
	400	4,7	-	2	3	6	8
	1000	10,3	-	1	1	3	4
Sodium-vapour lamps (high pressure lamps), compensated	150	0,83	20	5	7	20	25
	250	1,5	33	3	4	12	15
	330	2	40	2	3	10	13
	400	2,4	48	2	2	8	12
	1000	6,3	106	1	1	4	6
Sodium-vapour lamps (high pressure lamps) with serial electronic (e. g.: PCI) 50-125 $\times \ln$ lamp for $0,6 \mathrm{~ms}$	20	0,1	integrated	9	9	18	20
	35	0,2	integrated	6	6	11	13
	70	0,36	integrated	5	5	10	12
	150	0,7	integrated	4	4	8	10
LED-Lamps consider the inrush current of the lamp ballast and the $\cos \varphi$ of the lamp		urrent of inrush c inrush cur	[A] contactor amp/EVG	195	233 $230 V$	424 ax. 60°	565

- Modular Contactors "R" AC-1, AC Coil

Type			2-pole				4-pole			
			R20	R25	R40	R63	R25	R40	R63	RHII
Main Contacts ${ }^{5(6) 77}$										
Rated insulation voltage $\mathbf{U}_{\mathbf{i}}$		V	$440{ }^{21}$	$441{ }^{21}$	$442{ }^{2)}$	$443{ }^{2)}$	$444{ }^{21}$	$445{ }^{2)}$	$446{ }^{2)}$	$447{ }^{2)}$
Rated operation voltage $U_{\text {e }}$		V	440	440	440	440	440	440	440	440
Frequency of operations z	AC1, AC3	1/h	300	300	600	600	300	600	600	600
Mechanical life		5×10^{6}	1	1	1	1	1	1	1	1
Utilization category AC1 / AC7 ${ }_{\text {a }}$										
Switching of resistive load										
Rated operational current $\mathrm{I}_{\mathrm{e}}\left(=l_{l_{t}}\right)$										
open	at $60^{\circ} \mathrm{C}$	A	20	25	40	63	25	40	63	-
Contact life		5×10^{6}	0,1	0,1	0,1	0,1	0,1	0,1	0,1	-
Minimum Switch Voltage		V / mA	24/100	24/100	24/100	24/100	24/100	24/100	24/100	17/5
Short time current	10s-current	A	72	72	216	240	72	216	240	-
Power loss per pole at le/AC1		W	2	3	3	7	2	3	7	0,5
Utilization category AC2 and AC3 / AC7b										
Switching of three-phase motors										
Rated operational current $I_{\text {e }}$		A	-	-	-	-	9	27	30	-
Rated operational power										
of three-phase motors	220 V	kW	-	-	-	-	2.2	7.5	8	-
$50-60 \mathrm{~Hz}$	230-240V	kW	-	-	-	-	2.5	8	8,5	-
	380-415V	kW	-	-	-	-	4	12,5	15	-
2-pole motors	230 V	kW	1.1	1.3	2,6	5	-	-	-	-
Contact life		5×10^{6}	0.15	0.15	0.15	0.15	0.15	0.15	0.15	-
Power consumption of coils										
AC operated	inrush	VA	7-9	7-9			20-25	33-45	33-45	-
	sealed	VA	2.2-4.2	2.2-4.2	5.7	5.7	4-6	6-8	6-8	-
		W	0.8-1.6	0.8-1.6		5-7	1.5-2.5	2.6	2.6	-
$A C$ and DC-operated		W	-	-			3-4	-	-	-
Operation range of coilsin multiples of control voltage $\mathrm{U}_{5}\left(-40^{\circ}-+40^{\circ} \mathrm{C}\right)$										
			0.85-1.1	0.85-1.1	0.85-1.1	0.85-1.1	0.85-1.1	0.85-1.1	0.85-1.1	-

2) Suitable for: earthed-neutral systems, overvoltage category I to III, pollution degree 3 (standard-industry): Uimp $=4 \mathrm{kV}$.
3) Max. occ. switching overvoltage $<4 \mathrm{kV}$
4) Duty cycle: 100%

Technical Specification - Modular Contactors AC-1

- Modular Contactors "R" AC-1, AC/ACDC Coil

Data according to IEC60 947-4-1, IEC60 947-5-1, VDE 0660

Type			R20	R25 (2p.)	R25 (4p.)	R25-..VM	R40	R63	RHII
Short circuit protection									
max. fuse Coordination-type "1"	$\mathrm{gL}(\mathrm{gG})$	A	35	35	35	35	63	80	-
Rated short circuit current	"r"	kA	3	3	3	3	3	3	-
	"lq"	kA	3	3	10	10	10	10	-
Switching time at control voltage U $\pm 10 \%$									
	make time	ms	7-16	7-16	9-15	17-24	11-15	11-15	-
	release time	ms	6-12	6-12	4-8	17-23	6-13	6-13	-
	arc duration	ms	10-15	10-15	10-15	10-15	10-15	10-15	-
Cable cross-sections									
Main connector	solid or stranded	mm^{2}	1.5-10	1.5-10	1.5-10	1.5-10	2.5-25	2.5-25	0.5-2.5 ${ }^{31}$
	flexible	mm^{2}	1.5-6	1.5-6	1.5-6	1.5-6	2.5-16	2.5-16	0.5-2.5 ${ }^{31}$
	flexible with multicore cable end	mm^{2}	1.5-6	1.5-6	1.5-6	1.5-6	2.5-16	2.5-16	0.5-1.5
Clamps per pole			1	1	1	1	1	1	2
Magnetic coil	solid or stranded	mm^{2}	0.75-2.5	0.75-2.5	0.75-2.5	0.75-2.5	0.75-2.5	0.75-2.5	-
	flexible	mm^{2}	0.5-2.5	0.5-2.5	0.5-2.5	0.5-2.5	0.5-2.5	0.5-2.5	-
	flexible with multicore cable end	mm^{2}	0.5-1.5	0.5-2.5	0.5-1.5	0.5-1.5	0.5-1.5	0.5-1.5	-
Clamps per pole			1	1	1	1	1	1	-
Auxiliary Contacts ${ }^{5 / 617)}$									
Rated insulation voltage $\mathbf{U}_{\mathbf{i}}{ }^{1 /}$		$\checkmark \mathrm{AC}$	-	-	-	-	-	-	440^{21}
Thermal rated current $I_{\text {th }}$	$40^{\circ} \mathrm{C}$	A	-	-	-	-	-	-	10
Ambient temperature	$60^{\circ} \mathrm{C}$	A	-	-	-	-	-	-	6
Utilization category AC15									
Rated operational	220-240V	A	-	-	-	-	-	-	3
current $\mathrm{I}_{\text {e }}$	380-415V	A	-	-	-	-	-	-	2
	440 V	A	-	-	-	-	-	-	1,6
Utilization category DC13									
Rated operational	24-60V	A	-	-	-	-	-	-	2
current $l_{\text {e }}$	110 V	A	-	-	-	-	-	-	0.4
per pole	220 V	A	-	-	-	-	-	-	0.1
Short circuit protection									
short-circuit current 1kA, contact welding not accepted	gL (gG)	A	-	-	-	-	-	-	10

2) Suitable for: earthed-neutral systems, overvoltage category I to III, pollution degree 3 (standard-industry): Uimp $=4 \mathrm{kV}$.
3) Maximum cable cross-section with prepared conductor
4) AC7b motor 2 -pole $230 \mathrm{~V} 1,1 \mathrm{~kW}$
5) Rated frequency $50 / 60 \mathrm{~Hz}$
6) Max. occ. switching overvoltage $<4 \mathrm{kV}$
7) Duty cycle: 100%

- Modular Contactors "R" AC-1, ACDC Coil

Type		$\begin{gathered} \text { 4-pole } \\ \text { R25-..VM } \\ \hline \end{gathered}$	RH11-1
Main contacts ${ }^{5 / 617}$			
Rated insulation voltage U_{i}	V	$440{ }^{21}$	$440{ }^{21}$
Rated operational voltage $U_{\text {e }}$	V	440	440
Switching frequency AC1, AC3	1/h	300	600
Mechanical endurance	5×10^{6}	1	1
Utilization category AC1			
Rated operational current $I_{e}\left(=l_{t+1}\right)$			
open... at $60^{\circ} \mathrm{C}$	A	25	-
Endurance of main contacts	$\mathrm{S} \times 10^{6}$	0.1	-
Minimum switching voltage	V / mA	24/100	17/5
Short time current 10s-current	A	72	-
Power loss per polel ${ }_{\text {e }} /$ ACl	W	2	0.5
Utilization category AC3 / AC7b			
Switching of slipring or squirrel-cage motors			
Rated operational current $\mathrm{I}_{\text {e }}$	A	9	-
Rated power of motor 220 V	kW	2.2	-
$50-60 \mathrm{~Hz}$ 230-240V	kW	2.5	-
$380-415 \mathrm{~V}$	kW	4	-
2-pole motors 230V	kW	-	-
Endurance of main contacts	5×10^{6}	0.15	-
Power consumption of coil			
AC-operated closing	VA	20-25	-
closed	VA	4-6	-
	W	3-3.5	
DC-operated	W	3-4	-
Operating range of coilin multiples of control voltage $\mathrm{U}_{5}\left(-40^{\circ} \mathrm{C}\right.$ to $\left.+40^{\circ} \mathrm{C}\right)$			
		0.85-1.1	-

2) Valid for: earthed-neutral systems, overvoltage category I to III, pollution degree 3 (standard-industry): $\mathrm{U}_{\mathrm{imp}}=4 \mathrm{kV}$
3) Rated frequency $50 / 60 \mathrm{~Hz}$
4) Max. occ. switching overvoltage $<4 \mathrm{kV}$
5) Duty cycle: 100%

Modular Contactors "Amparo" AC-1, AC Coil

Data according:	R20	R25	R40	R63
	IEC/EN 60947-4-1			
	IEC/EN 61095			
Rated current $\mathrm{l}_{\text {th: }}$	20A	25A	40A	63A
Rated voltage 1 -phase U_{8} :	230 V	230 V	230 V	230 V
3-phase U_{e} :	-	400 V	400 V	400V
Rated current $\mathrm{l}_{\text {e: }} \quad$ at $\mathrm{ACl} / \mathrm{AC7}_{\text {a }}$	20A	25A	40A	63A
Rated power $\quad \mathrm{ACl}$ at $\mathrm{U}_{\mathrm{e}}=230 \mathrm{VAC} \mathrm{Pmax:}$	4kW	16 kW	-	-
AC1 at $U_{e}=400 \mathrm{VAC} \mathrm{Pmax}$:	-	-	28kW	40kW
AC3 at $U_{e}=400 \mathrm{VAC} \mathrm{Pmax}$:	-	4kW	12kW	15 kW
Rated insulation voltage U_{i} :	500 V	500 V	500 V	500 V
Rated impulse withstand voltage $\mathrm{U}_{\text {imp }}$:	4kV			
Nominal frequency:	$50 / 60 \mathrm{~Hz}$			
Maximum short circuit protection	$25 \mathrm{AgL} / \mathrm{gG}$	$35 \mathrm{AgL} / \mathrm{gG}$	$63 \mathrm{AgL} / \mathrm{gG}$	80A gl/g
Mechanical endurance	3000000	3000000	3000000	3000000
Electrical endurance at ${ }^{\text {a }}$ / $\mathrm{AC7}_{\text {a }}$	150000	150000	150000	150000
at AC3 / AC7b	-	150000	150000	150000
Breadth ($1 \mathrm{MW}=17.8 \mathrm{~mm}$)	1 MW	2 MW	3 MW	3 MW
Maximum surrounding temperature	$-5^{\circ} \mathrm{C} \ldots+55^{\circ} \mathrm{C}$			
Protection degree	IP20			

Terminal Screws

Devices	Kind of connection							
	Screw with	Screw with		Screw		Screw driver	Tightening torque	
	washer	clamp box		w.nut			Nm	lb. inch
Type	最	$\begin{gathered} \text { 菑 } \\ \text { (\%) } \end{gathered}$						
Modular Contactors								
Main and auxiliary conductors R20, R25	-	M3, 5	-	-	(4)	Pz1	0.8-1.4	7-12
R40, R63	-	M5	-	-		Pz2	2.5-3	22-26
Coil conductor								
R20, R25	-	M3,5	-	-		Pz 1	0.6-1.2	5-11
R40, R63	-	M3, 5	-	-		Pz 1	0.6-1.2	5-11

Electromechanical Contactors

Electromechanical Contactors Series LA

Reversing Contactor Combinations
Series ALEA LSW

Contactors Series CUBICO Mini, 3-pole

Electromechanical Contactors Series ALEA LS

Star-Delta Contactor Combinations Series ALEA LSY

Contactors Series CUBICO Classic, 3-pole

Electromechanical Contactors

Index
Electromechanical Contactors Series LA Page 172
Electromechanical Contactors Series ALEA LS Page 203
Reversing Contactor Combinations Series ALEA LSW Page 254
Star-Delta Contactor Combinations Series ALEA LSY Page 261
Contactors Series CUBICO Mini, 3-pole Page 266
Contactors Series CUBICO Classic, 3-pole Page 269
Technical Specification Page 273

Electromechanical Contactors Series LA

- Micro Contactors LA, Size M

Schrack-Info

- Contactors up to $2.2 \mathrm{~kW}, 3$ - or 4 -pole
- Worldwide smallest power contactor
- Suitable for safety applications according IEC 60335-1
- 3-pole contactors with one integrated auxiliary contact (1 NO or 1 NC)
- All auxiliary contactors are suitable for electronic circuits according to IEC 60947-5-4
- 4-pole contactors without auxiliary contact
- Contactors can not be fitted with additional auxiliary contacts
- No Thermal overload relais for contactors LAM are available
- Mountable on mounting rail TS 15 or with adaptor on DIN rail -TS35
- Further accessories find attached

Rated insulation voltage $\mathbf{U}_{\mathbf{i}}$	(VAC)	$\begin{gathered} \text { KO-05D } \\ 440 \end{gathered}$
Utilization category AC-1 $\cos \varphi=1$		
Rated operational power at 400VAC	(kW)	8.3
Rated operational current $\mathrm{I}_{\mathrm{e}}=\mathrm{I}_{\mathrm{th}}$ at $40^{\circ} \mathrm{C}$ and 480 VAC	(A)	12
Utilization category AC-2 and AC-3		
Rated operational power at 400VAC	(kW)	2.2
Rated operational current $I_{\text {e }}$ at $380-440 \mathrm{VAC}$	(A)	5
Ambient temperature (operation)	$\left({ }^{\circ} \mathrm{C}\right)$	-40 ... +60
Permissible mounting position		
Rules and regulations according		IEC 60947-4-1, EN 60947-4-1
Rated insulation voltage $\mathbf{U}_{\mathbf{i}}$	(VAC)	Auxiliary contacts 440
Thermal rated current $I_{t h}$ at $40^{\circ} \mathrm{C}$ and 440 VAC	(A)	5
Utilization category AC-15		
Rated operational current $\mathrm{I}_{\text {e }}$ at $40^{\circ} \mathrm{C}$ and $230 / 440 \mathrm{VAC}$	(A)	3/1
Utilization category DC13 ${ }^{11}$		
Rated operational current le at $40^{\circ} \mathrm{C}$ up to 60 VDC	(A)	0.5
Ambient temperature (operation)	$\left({ }^{\circ} \mathrm{C}\right)$	-40 ... +60
Rules and regulations according		IEC 60947-5-1, EN 60947-5-1

[^3](Test ratings 17VDC, 5mA) Positively guided contacts

- Micro Contactors LA, Size M

Dimensions

Circuit Diagrams

K0-05D10	K0-05D01	K0-05D00-40

Connection Diagrams

DESCRIPTION	TYPE NO.	AVAILABLE	ORDER NO.
2.2kW - 3-pole			
AC-3/5A, 3NO+1NO, 24VAC	K0-05D10	-000-0-6	LAMD0510
AC-3/5A, 3NO+1NO, 230VAC	K0-05D 10		LAMD0513
AC-3/5A, $3 \mathrm{NO}+1 \mathrm{NO}, 400 \mathrm{VAC}$	K0-05D10	- -0.000	LAMD0514
AC-3/5A, 3NO+1NO, 24VDC	K0-05D10	- -10000	LAMD0515
AC-3/5A, 3NO+1NC, 24VAC	K0-05D01	- -1000	LAMD0520
AC-3/5A, 3NO+1NC, 230VAC	K0-05D01	$+\infty=-\infty$	LAMD0523
AC-3/5A, $3 \mathrm{NO}+1 \mathrm{NC}, 400 \mathrm{VAC}$	K0-05D01	- -1000	LAMD0524
AC-3/5A, 3NO+1NC, 24VDC	K0-05D01	$\begin{array}{lll} \hline-\infty & -\infty \\ \hline \end{array}$	LAMD0525
2.2kW - 4-pole			
AC-3/5A, 4NO, 24VAC	K0-05D00-40	- -80	LAMD0540
AC-3/5A, 4NO, 230VAC	K0-05D00-40	$\begin{array}{lll} -600 & -0 \\ \hline \end{array}$	LAMD0543
AC-3/5A, 4NO, 400VAC	K0-05D00-40	$+50-6$	LAMD0544
AC-3/5A, 4NO, 24VDC	K0-05D00-40	$+\infty=-\infty$	LAMD0545
Accessories for contactors size \mathbf{M}			
DIN-rail slotted, $1000 \times 15 \times 5 \mathrm{~mm}$	TS 15		LAMZTS 15
DIN-rail adaptor TS35	TS35	$+\infty=0$	LAMZTS35

Electromechanical Contactors Series LA

- Mini Contactors LA, Size 1

Schrack-Info

- Contactors up to $4 \mathrm{~kW}, 3$ - or 4 -pole
- 3-pole contactors with integrated auxiliary contacts (1NO or 1NC), 4-pole contactors without integrated auxiliary contact
- 3-pole contactors with one integrated auxiliary contact NO , auxiliary contact HKM can be snapped on
- 3-pole contactors with one integrated auxiliary contact NC, auxiliary contact HKM can be snapped on
- 4-pole contactors, auxiliary contacts HKM can be snapped on
- 3-pole contactors for direct mounting of Thermal overload relais of type U12/16E..K 1 suitable
- 4-pole contactors are not suitable for Thermal overload relais
- Mountable on DIN-rail TS35 or mounting plate
- Further accessories find attached

		K1-09
Rated insulation voltage $\mathrm{U}_{\mathbf{i}}$	(VAC)	690
Utilization category AC-1 $\cos \varphi=1$		
Rated operational power at 400VAC	(kW)	13,8
Rated operational current $\mathrm{I}_{\mathrm{e}}=\mathrm{I}_{\mathrm{t}}$ at $40^{\circ} \mathrm{C}$ and 690VAC	(A)	20
Utilization category AC-2 and AC-3		
Rated operational power at 400VAC	(kW)	4
Rated operational current I_{e} at $380-440 \mathrm{VAC}$	(A)	9
Ambient temperature (operation)	$\left({ }^{\circ} \mathrm{C}\right)$	$-40 \ldots+60$
Permissible mounting position		
Rules and regulations according		IEC 60947-4-1, EN60947-4-1
		included auxiliary contacts
Rated insulation voltage $\mathbf{U}_{\mathbf{i}}$	(VAC)	690
Thermal rated current $\mathrm{l}_{\text {th }}$ at $40^{\circ} \mathrm{C}$ and 440 VAC	(A)	10
Utilization category AC-15		
Rated operational current le at $40^{\circ} \mathrm{C}$ and 230/440VAC	(A)	$3 / 1.6$
Utilization category DC13 ${ }^{1 /}$		
Rated operational current le at $40^{\circ} \mathrm{C}$ up to 60/110/220VDC	(A)	$2 / 0.4$ / 0.1
Ambient temperature (operation)	$\left({ }^{\circ} \mathrm{C}\right)$	$-40 \ldots+60$
Rules and regulations according		IEC 60947-5-1, EN 60947-5-1

- Mini Contactors LA, Size 1

Dimensions

Circuit Diagrams

Connection Diagrams

K1-09D10	K1-09D01	K1-09D00-40
$\bigcirc{ }^{1} \bigcirc^{3} \bigcirc^{5} \bigcirc^{13} \mathrm{O}^{\text {A1 }}$	$\bigcirc \bigcirc^{1} \bigcirc^{3} \bigcirc^{5} \bigcirc^{21} \mathrm{O}^{\mathrm{A} 1}$	$\mathrm{O}_{1}^{1} \mathrm{O}^{3} \mathrm{O}^{5} \mathrm{O}$
$\begin{array}{llllll} & 0 & 0 & 0 & \bigcirc & 0 \\ 2 & 4 & 6 & 14 & A^{2}\end{array}$		$\begin{array}{llllll}0 & 0 & 0 & 0 & 0 \\ 2 & 4 & 6 & 8 & A 2\end{array}$

DESCRIPTION	TYPE NO.	AVAILABLE	ORDER NO.
4kW - 3-pole			
$3 \mathrm{NO}+1 \mathrm{NC}, 20 \mathrm{~A}, 24 \mathrm{VAC}$	K1-09D10	-000-000	LA100910
$3 \mathrm{NO}+1 \mathrm{NC}, 20 \mathrm{~A}, 24 \mathrm{VDC}$	K1-09D10	-0000	LA100915
3 NO main + 1NC auxiliary contact,20A, 24VDC+supressor	K1-09D10		LA10091B
$3 \mathrm{NO}+1 \mathrm{NC}, 20 \mathrm{~A}, 230 \mathrm{VAC}$	K1-09D10		LA100913
3 NO main + 1NC auxiliary contact,20A,230VAC+supressor	K1-09D10		LA10091C
$3 \mathrm{NO}+1 \mathrm{NC}, 20 \mathrm{~A}, 24 \mathrm{VAC}$	K1-09D01		LA100920
$3 \mathrm{NO}+1 \mathrm{NC}, 20 \mathrm{~A}, 24 \mathrm{VDC}$	K1-09D01	-600-9	LA100925
3NO + 1NC, 20A, 230 VAC	K1-09D01	$+\infty 0=0$	LA100923
4kW - 4-pole			
4 NO 230V AC, 20A	K1-09D00-40	$+500-6$	LA100943
4NO, 20A, $24 \mathrm{VDC}+$ suppressor	K1-09D00-40	0	LA10094B
Auxiliary contacts			
Auxiliary contact block for mini Contactors K1, 2NO	HKM20		LA 190143
Auxiliary contact block for mini Contactors K1, 1NO+1NC	HKM 11		LA 190151
Auxiliary contact block for mini Contactors K1, 2NO+2NC	HKM22		LA190150
Auxiliary contact block for mini Contactors K1, 2NC, HKMO2	HKMO2		LA 190152

Electromechanical Contactors Series LA

Power Contactors LA, Size 2

Schrack-Info

- Contactors up to $30 \mathrm{~kW}, 4$-pole
- K2-23 up to K2-37, in maximum 4 frontside auxiliary contacts HN or HA can be snapped on
- K2-45 up to K2-60, in maximum 6 frontside auxiliary contacts HN or HA can be snapped on
- No Thermal overload relais retrofit
- Mountable on DIN-rail TS35 or mounting plate
- Further accessories find attached

		K2-23	K2-30	K2-37	K2-45	K2-60
Rated insulation voltage U_{i}	(VAC)					
Utilization category AC-1 $\cos \varphi=1$		690				
Rated operational power at 400VAC	(kW)	31	34,5	34,5	55	69
Rated operational current $\mathrm{I}_{\mathrm{e}}=\mathrm{I}_{\mathrm{t}}$ at $40^{\circ} \mathrm{C}$ and 690VAC	(A)	45	50	50	80	100
Utilization category AC-2 and AC-3						
Rated operational power at 400VAC	(kW)	11	15	18,5	22	30
Rated operational current I_{e} at $380-400 \mathrm{VAC}$	(A)	23	30	37	45	60
Ambient temperature (operation)	$\left({ }^{\circ} \mathrm{C}\right)$	-40 ... +60				
Permissible mounting position						
Rules and regulations according		IEC 947-4-1/ EN60947-4-1				

Dimensions

- Power Contactors LA, Size 2

Circuit and Connection Diagram

DESCRIPTION	TYPE NO.	AVAILABLE	ORDER NO.
4-pole			
K2-23A00-40 230VAC/11kW	K2-23A00-40		LA202343
K2-30A00-40 230VAC/15kW	K2-30A00-40		LA203043
K2-37A00-40 110VAC/18.5kW	K2-37A00-40		LA203742
K2-37A00-40 230VAC/18kW	K2-37A00-40		LA203743
K2-45A00-40 230VAC/22kW	K2-45A00-40		LA204543
K2-60A00-40 230VAC/30kW	K2-60A00-40		LA206043
Auxiliary contacts			
front 1NO, 3A (230V AC-15) for LA2, LA3004-LA3115, LA4	HN10	-000-n	LA190100
front 1NC, 3A (230V AC-15) for LA2, LA3004-LA3115, LA4	HNO1	-000-0	LA190101
front 1NC, 6A (230V, AC-15) for K2, K3-07 to K3-115, K4	HAO1		LA190135
front 1NO, 6A (230V, AC-15) for K2, K3-07 to K3-115, K4	HA10		LA190137
front learly make NO, 3A (230V, AC-15) for K2, K3-07 to K3-115, K4	HN1OU	- -8000	LA190138
front 1 delayed NC, 3A (230V, AC-15) for K2, K3-07 to K3-115, K4	HNOIU	-000-000,	LA190139

Electromechanical Contactors Series LA

Power Contactors LA, Size 3, 4-18.5kW

Schrack-Info

- Contactors from 4 kW up to $18.5 \mathrm{~kW}, 3$ - or 4 -pole
- K3-10 up to K3-22, in maximum 4 frontside auxiliary contacts HN or HA can be snapped on
- K3-24 up to K3-40, in maximum 4 frontside auxiliary contacts HN or HA as well as 2 "side mounted" auxiliary contacts HB can be snapped on
- 3-pole contactors K3-10 up to K3-22 suitable for Thermal overload relais of type U12/16E..K3
- 3-pole contactors K3-10 up to K3-40 suitable for Thermal overload relais of type U3/32
- 3-pole contactors K3-24 up to K3-40 suitable for Thermal overload relais of type U3/42
- 4-pole contactors are not suitable for Thermal overload relais
- Mountable on DIN-rail TS35 or mounting plate
- Further accessories find attached

		K3-10	K3-14	K3-18	K3-22	K3-24	K3-32	K3-40
Rated insulation voltage U_{i}	(VAC)	690						
Utilization category AC-1 $\cos \varphi=1$		690						
Rated power at 400VAC	(kW)	17,3	17,3	22,1	22,1	34,6	45	55,4
Rated operational current $\mathrm{I}_{\mathrm{e}}=\mathrm{I}_{\text {th }}$ at $40^{\circ} \mathrm{C}$ and 690VAC	(A)	25	25	32	32	50	65	80
Utilization category AC-2 and AC-3								
Rated power at 400VAC	(kW)	4	5,5	7,5	11	11	15	18,5
Rated operational current I_{e} at 380-400VAC	(A)	10	14	18	22	24	32	40
Ambient temperature (operation)	$\left({ }^{\circ} \mathrm{C}\right)$	$-40 \ldots+60$						
Permissible mounting position					1			
Rules and regulations according		IEC 60947-4-1, EN60947-4-1						

		Included auxiliary contacts
Rated insulation voltage $\mathbf{U}_{\mathbf{i}}$	(VAC)	690
Thermal rated current I_{t} at $40^{\circ} \mathrm{C}$ and 690VAC	(A)	10
Utilization category $\mathrm{AC}-15$		
Rated operational current I_{e} at $40^{\circ} \mathrm{C}$ and $230 / 440 \mathrm{VAC}$	(A)	$3 / 1,6$
Utilization category $\mathrm{DC13} 3^{1)}$		
Rated operational current I_{e} at $40^{\circ} \mathrm{C}$ up to $60 / 110 / 220 \mathrm{VDC}$	(A)	$3,5 / 0,5 / 0,1$
Ambient temperature (operation)	($\left.{ }^{\circ} \mathrm{C}\right)$	$-40 \ldots+60$
Rules and regulations according		IEC $60947-5-1$, EN 60947-5-1

1) Auxiliary contacts suitable for electronic circuits, according EN60947-5-4 for rated voltage 24VDC (Test ratings $17 \mathrm{VDC}, 5 \mathrm{~mA}$), positively guided contacts

Power Contactors LA, Size 3, 4-18.5kW
Dimensions

1) Minimum side distances to conductive parts at coil voltages:
$500 \mathrm{~V} \mathrm{U}_{\mathrm{imp}}=6 \mathrm{kV} 2 \mathrm{~mm}$
$660-690 \mathrm{~V} \mathrm{U}_{\mathrm{imp}}=8 \mathrm{kV} 4,5 \mathrm{~mm}$

Circuit Diagrams

K3-..ND10

K3-..NA00-22

K3-..ND01

K3-..ND10=

K3-.. A00

K3-..ND01=

K3-.. A00 $=$

Electromechanical Contactors Series LA

- Power Contactors LA, Size 3, 4-18.5kW
- Connection Diagrams

K3-..ND10	K3-..ND01	к3-..A00	K3-..NA00-40	K3-14NAOO-22

DESCRIPTION	TYPE NO.	AVAILABLE	ORDER NO.
4kW / 10A AC3, 25A AC-1, 3-pole			
$4 \mathrm{~kW}, \mathrm{AC} 3,10 \mathrm{~A}, 24 \mathrm{VAC}+1 \mathrm{NO}$ built in	K3-10ND10		LA301010N
$4 \mathrm{~kW}, \mathrm{AC} 3,10 \mathrm{~A}, 24 \mathrm{VDC}+1 \mathrm{NO}$ built in	K3-10ND $10=$		LA301015N
$4 \mathrm{~kW}, \mathrm{AC} 3,10 \mathrm{~A}, 24 \mathrm{VAC}+1 \mathrm{NC}$ built in	K3-10ND01		LA301020N
$4 \mathrm{~kW}, \mathrm{AC} 3,10 \mathrm{~A}, 48 \mathrm{VAC}+1 \mathrm{NO}$ built in	K3-10ND10	-000-n	LA301011N
$4 \mathrm{~kW}, \mathrm{AC} 3,10 \mathrm{~A}, 110 \mathrm{VAC}+1 \mathrm{NO}$ built in	K3-10ND10		LA301012N
$4 \mathrm{~kW}, \mathrm{AC} 3,10 \mathrm{~A}, 230 \mathrm{VAC}+1 \mathrm{NO}$ built in	K3-10ND10	[-600-4	LA301013N
$4 \mathrm{~kW}, \mathrm{AC} 3,10 \mathrm{~A}, 400 \mathrm{VAC}+1 \mathrm{NO}$ built in	K3-10ND10		LA301014N
$4 \mathrm{~kW}, \mathrm{AC} 3,10 \mathrm{~A}, 230 \mathrm{VAC}+1 \mathrm{NC}$ built in	K3-10ND01	$\begin{array}{rrr} \hline-\infty 0 & \sigma \\ \hline \end{array}$	LA301023N
$4 \mathrm{~kW}, \mathrm{AC} 3,10 \mathrm{~A}, 400 \mathrm{VAC}+1 \mathrm{NC}$ built in	K3-10ND01	[-000]	LA301024N
$4 \mathrm{~kW}, \mathrm{AC} 3,10 \mathrm{~A}, 230 \mathrm{VAC}+1 \mathrm{NC}$ built in	K3-10ND01 =	- $-\infty \times 0$	LA301025N
4kW / 10A AC3, 25A AC-1, 4-pole			
4kW, AC3, 10A, 230VAC, 4 main contacts	K3-10NA00-40	- $-\infty$	LA301043N
$5.5 \mathrm{~kW} / 14 \mathrm{~A} \mathrm{AC}-3,25 \mathrm{~A} \mathrm{AC}$-1, 3-pole			
Contactor 3pole, $5.5 \mathrm{~kW}, \mathrm{AC} 3,14 \mathrm{~A}, 24 \mathrm{VAC}+1 \mathrm{NO}$ built in	K3-14ND10	-	LA301410N
Contactor 3pole, $5.5 \mathrm{~kW}, \mathrm{AC} 3,14 \mathrm{~A}, 48 \mathrm{VAC}+1 \mathrm{NO}$ built in	K3-14ND 10		LA301411N
Contactor 3-pole, $5.5 \mathrm{~kW}, \mathrm{AC} 3,14 \mathrm{~A}, 24 \mathrm{VAC}+1 \mathrm{NC}$ built in	K3-14ND01	$+\infty=0$	LA301420N
Contactor 3-pole, $5.5 \mathrm{~kW} / 14 \mathrm{~A} \mathrm{AC3}, \mathrm{25A} \mathrm{ACI}, \mathrm{1NC}$,	K3-14ND01		LA301422N
Contactor 3pole, $5.5 \mathrm{~kW}, \mathrm{AC} 3,14 \mathrm{~A}, 24 \mathrm{VDC}+1 \mathrm{NO}$ built in	K3-14ND $10=$	$\begin{array}{rrr} \hline-80 & 0-6 \\ \hline \end{array}$	LA301415N
Contactor 3-pole, $5.5 \mathrm{~kW} / 14 \mathrm{~A} \mathrm{AC3}, 25 \mathrm{~A} \mathrm{ACl}, 1 \mathrm{NO}, 220 \mathrm{VDC}$	K3-14ND $10=$		LA301418N
Contactor 3-pole, 5.5kW, AC3, 14A, $24 \mathrm{VDC}+1 \mathrm{NC}$ built in	K3-14NDO1 =	- $-\infty \times 0$	LA301425N
Contactor 3pole, 5.5kW, AC3, 14A, 110VAC + 1NO built in	K3-14ND 10		LA301412N
Contactor 3pole, $5.5 \mathrm{~kW}, \mathrm{AC} 3,14 \mathrm{~A}, 230 \mathrm{VAC}+1 \mathrm{NO}$ built in	K3-14ND10	$\begin{array}{rrr} \hline-000 & \sigma-\infty \\ \hline \end{array}$	LA301413N
Contactor 3-pole, $5.5 \mathrm{~kW}, \mathrm{AC} 3,14 \mathrm{~A}, 230 \mathrm{VAC}+1 \mathrm{NC}$ built in	K3-14NDO1	$\begin{array}{r} -\infty 0 \\ \hline 00 \\ \hline \end{array}$	LA301423N
Contactor 3pole, $5.5 \mathrm{~kW}, \mathrm{AC} 3,14 \mathrm{~A}, 400 \mathrm{VAC}+1 \mathrm{NO}$ built in	K3-14ND 10	$+\infty 0=0$	LA301414N
Contactor 3-pole, $5.5 \mathrm{~kW} / 14 \mathrm{~A} \mathrm{AC3}, \mathrm{25A} \mathrm{ACl}, \mathrm{1NC}, \mathrm{400VAC}$	K3-14ND01		LA301424N

5.5kW / 14A AC-3, 25A AC-1, 4-pole

Contactor 4-pole, $5.5 \mathrm{~kW}, \mathrm{AC} 3,14 \mathrm{~A}, 230 \mathrm{VAC}, 4$ main contacts	K3-14NA00-40	LA301443N
Contactor 4-pole, $5.5 \mathrm{~kW} / 14 \mathrm{~A} \mathrm{AC3}, 25 \mathrm{~A} \mathrm{AC1}, 2 \mathrm{NO}+2 \mathrm{NC}, 230 \mathrm{VAC}$	K3-14NA00-22	LA3014C3N

Contactor 3-pole, $7.5 \mathrm{~kW}, 1 \mathrm{NO}, 24 \mathrm{VAC}, 18 \mathrm{~A} \mathrm{AC3}, \mathrm{32A} \mathrm{ACl}$	K3-18ND10		LA301810N
Contactor, 3-pole, $7.5 \mathrm{~kW} / 18 \mathrm{~A} \mathrm{AC3}, 32 \mathrm{~A} \mathrm{ACl}, 1 \mathrm{NO}, 24 \mathrm{VDC}$	K3-18ND10=	- $-\cdots$	LA301815N
Contactor 3-pole, $7.5 \mathrm{~kW} / 18 \mathrm{~A} \mathrm{AC3}, 32 \mathrm{~A} \mathrm{ACl}, 1 \mathrm{NO}, 48 \mathrm{VDC}$	K3-18ND $10=$		LA301816N
Contactor, 3-pole, $7.5 \mathrm{~kW} / 18 \mathrm{~A} \mathrm{AC3}, 32 \mathrm{~A} \mathrm{ACI}, 1 \mathrm{NC}, 24 \mathrm{VAC}$	K3-18ND01	[-000-9,	LA301820N
Contactor, 3-pole, $7.5 \mathrm{~kW} / 18 \mathrm{~A} \mathrm{AC3}, 32 \mathrm{~A} \mathrm{ACl}, \mathrm{1NC}, \mathrm{24VDC}$	K3-18ND01 =	- -60	LA301825N
Contactor 3-pole, 7.5kW/18A AC3, 32A ACI, 1NO, 48VAC	K3-18ND 10		LA301811N
Contactor 3-pole, 7.5kW/18A AC3, 32A ACl, 1NO, 110VAC	K3-18ND 10		LA301812N
Contactor 3-pole, $7.5 \mathrm{~kW}, 1 \mathrm{NO}, 230 \mathrm{VAC}, 18 \mathrm{~A} \mathrm{AC3,32A} \mathrm{AC1}$	K3-18ND10	-000-6	LA301813N

Power Contactors LA, Size 3, 4-18.5kW

DESCRIPTION	TYPE NO.	AVAILABLE	ORDER NO.
7.5kW / 18A AC-3, 32A AC-1, 3-pole			
Contactor, 3-pole, 7.5kW/18A AC3, 32A ACI, 1NC, 230VAC	K3-18NDO1	[000-9,	LA301823N
Contactor 3-pole, 7.5kW/18A AC3, 32A ACl, 1NO, 415VAC	K3-18ND 10	$-600-\frac{1}{0}$	LA301814N
7.5kW / 18A AC-3, 32A AC-1, 4-pole			
Contactor, 4-pole, 7.5 kW , 4 main contacts., 230VAC, 18A AC3,32A AC1	K3-18NA00-40	- + -	LA301843N
$11 \mathrm{~kW} / 22 \mathrm{~A}$ AC-3, 32A AC-1, 3-pole			
Contactor, 3 -pole, $11 \mathrm{~kW}, 1 \mathrm{NO}, 24 \mathrm{VAC}, 22 \mathrm{~A} \mathrm{AC3}, 32 \mathrm{~A} \mathrm{AC1}$	K3-22ND 10	-700-9	LA302210N
Contactor, 3 -pole, $11 \mathrm{~kW} / 22 \mathrm{~A} \mathrm{AC3}, 32 \mathrm{~A} \mathrm{ACl}, 1 \mathrm{NO}, 24 \mathrm{VDC}$	K3-22ND10=	-000-9,	LA302215N
Contactor 3-pole, $11 \mathrm{~kW} / 22 \mathrm{~A}$ AC3, 32A ACl, 1NO, 48VDC	K3-22ND10=		LA302216N
Contactor, 3-pole, $11 \mathrm{~kW} / 22 \mathrm{~A} \mathrm{AC3}, 32 \mathrm{~A} \mathrm{ACl}, 1 \mathrm{NC}, 24 \mathrm{VDC}$	K3-22NDO1 =	-000-9,	LA302225N
Contactor 3-pole, $11 \mathrm{~kW} / 22 \mathrm{~A}$ AC3, 32A ACl, $1 \mathrm{NO}, 48 \mathrm{VAC}$	K3-22ND 10		LA302211N
Contactor 3-pole, $11 \mathrm{~kW} / 22 \mathrm{~A}$ AC3, 32A ACl, 1NO, 110VAC	K3-22ND10		LA302212N
Contactor, 3-pole, $11 \mathrm{~kW}, 1 \mathrm{NO}, 230 \mathrm{VAC}, 22 \mathrm{~A} \mathrm{AC3}, 32 \mathrm{~A} \mathrm{ACl}$	K3-22ND 10	-000-9,	LA302213N
Contactor, 3-pole, $11 \mathrm{~kW} / 22 \mathrm{~A}$ AC3, 32A ACl, 1NC, 230VAC	K3-22ND01	-00\%-9,	LA302223N
Contactor, 3-pole $11 \mathrm{~kW} / 22 \mathrm{~A} \mathrm{AC3}, 32 \mathrm{~A} \mathrm{AC1}, \mathrm{1NO}, \mathrm{400VAC}$	K3-22ND10	- + -	LA302214N
Contactor 3-pole, $11 \mathrm{~kW} / 22 \mathrm{~A}$ AC3, 32A ACl, 1NC, 400VAC	K3-22ND01		LA302224N
$11 \mathrm{~kW} / 22 \mathrm{~A}$ AC-3, 32A AC-1, 4-pole			
Contactor, 4-pole, $11 \mathrm{~kW} / 22 \mathrm{~A}$ AC3, 32A ACl, 4 main contact, 230VAC	K3-22NA00-40		LA302243N
$11 \mathrm{~kW} / 24 \mathrm{~A}$ AC-3, 50A AC-1, 3-pole			
Contactor, 3-pole, $11 \mathrm{~kW} / 24 \mathrm{~A}$ AC3, 50A ACl, 24VAC	K3-24A00		LA302430
Contactor, 3-pole, $11 \mathrm{~kW} / 24 \mathrm{~A} \mathrm{AC3,50A} \mathrm{AC1}, \mathrm{48VDC}$	K3-24A00=		LA302436
Contactor, 3 -pole, 11kW/24A AC3, 50A AC1, 24VDC	K3-24A00=	-60\%-9,	LA302435
Contactor, 3-pole, $11 \mathrm{~kW} / 24 \mathrm{~A} \mathrm{AC3}, \mathrm{50A} \mathrm{ACl}, \mathrm{48VAC}$	K3-24A00		LA302431
Contactor, 3 -pole, $11 \mathrm{~kW} / 24 \mathrm{~A} \mathrm{AC3,50A} \mathrm{AC1}, \mathrm{110VAC}$	K3-24A00		LA302432
Contactor, 3-pole, $11 \mathrm{~kW} / 24 \mathrm{~A} \mathrm{AC3,50A} \mathrm{ACl}, \mathrm{230VAC}$	K3-24A00	- $+\cdots \times 0$	LA302433
15kW / 32A AC-3, 65A AC-1, 3-pole			
Contactor, 3-pole, 15kW/32A AC3, 65A ACl, 24VAC	K3-32A00	[-000-9,	LA303230
Contactor, 3 -pole, 15kW/32A AC3, 65A ACl, 24VDC	K3-32A00=	-000-9,	LA303235
Contactor, 3 -pole, 15kW/32A AC3, 65A ACl, 48VAC	K3-32A00		LA303231
Contactor, 3 -pole, 15kW/32A AC3, 65A ACl, 110VAC	K3-32A00		LA303232
Contactor, 3-pole, 15kW/32A AC3, 65A ACl, 230VAC	K3-32A00	$+\infty=\infty$	LA303233
Contactor, 3-pole, 15kW/32A AC3, 65A ACl, 400VAC	K3-32A00	-000-9,	LA303234
Contactor, 3-pole, 15kW/32A AC3, 65A ACl, 48VDC	K3-32A00=	- -0×0	LA303236
18.5kW / 40A AC-3, 80A AC-1, 3-pole			
Contactor, 3-pole, 18,5kW/40A AC3, 80A AC1, 24VAC	K3-40A00		LA304030
Contactor, 3 -pole, 18,5kW/40A AC3, 80A ACl, 48VAC	K3-40A00	-600-6	LA304031
Contactor, 3 -pole, 18,5kW/40A AC3, 80A ACl, 110VAC	K3-40A00		LA304032
Contactor, 3 -pole, 18,5kW/40A AC3, 80A ACl, 230VAC	K3-40A00	-000-9,	LA304033
Contactor, 3 -pole, 18,5kW/40A AC3, 80A ACl, 400VAC	K3-40A00		LA304034
Contactor, 3-pole, 18,5kW/40A AC3, 80A ACl, 24VDC	K3-40A00=		LA304035
Auxiliary contacts			
front 1NO, 3A (230V AC-15) for LA2, LA3004-LA3115, LA4	HN10		LA190100
front 1NC, 3A (230V AC-15) for LA2, LA3004-LA3115, LA4	HNO1	$+\infty=-\frac{1}{0}$	LA190101
front 1NC, 6A (230V, AC-15) for K2, K3-07 to K3-115, K4	HAO1	$+\infty 0$	LA190135
front 1NO, 6A (230V, AC-15) for K2, K3-07 to K3-115, K4	HA1O	$+000$	LA190137
front learly make NO, 3A (230V, AC-15) for K2, K3-07 to K3-115, K4	HNIOU	$-\infty=\infty$	LA190138
front 1delayed NC, 3A (230V, AC-15) for K2, K3-07 to K3-115, K4	HNOIU	$+\infty=0$	LA190139

Electromechanical Contactors Series LA

Power Contactors LA, Size 3, 22-90kW

Schrack-Info

- Contactors from 22 kW up to $90 \mathrm{~kW}, 3$ - or 4 -pole
- K3-50 up to K3-74, in maximum 4 frontside auxiliary contacts HN or HA as well as 2 "side mounted" auxiliary contacts HB can be snapped on
- K3-50 up to K3-74 with DC-coil, in maximum 3 frontside auxiliary contacts HN or HA as well as 2 "side mounted" auxiliary contacts HB can be snapped on
- K3-90 and K3-115, in maximum 7 frontside auxiliary contacts HN or HA as well as 2 "side mounted" auxiliary contacts HB can be snapped on
- K3-151 and K3-176, in maximum 1 frontside auxiliary contact HKT as well as 2 "side mounted" auxiliary contacts HKA 11 can be snapped on
- 3-pole Contactors K3-50 up to K3-74 suitable for Thermal overload relais of type U3/74
- 3-pole Contactors K3-90 and K3-115 suitable for Thermal overload relais of type U85
- 3-pole Contactors K3-151 and K3-176 suitable for Thermal overload relais of type U180
- 4-pole Contactors are not suitable for Thermal overload relais
- Mouting of K3-50 up to K3-74 on DIN-rail TS35 or mounting plate
- Mouting of K3-90 up to K3-115 on 2 DIN-rails TS35 or mounting plate
- Mouting of K3-151 and K3-176 on mounting plate
- Further accessories find attached

Power Contactors LA, Size 3, 22-90kW
Dimensions

Circuit Diagrams

Connection Diagrams

Electromechanical Contactors Series LA

Power Contactors LA, Size 3, 22-90kW

DESCRIPTION	TYPE NO.	AVAILABLE	ORDER NO.
22kW / 50A AC-3, 110A AC-1, 3-pole			
Contactor, 3 -pole, $22 \mathrm{~kW} / 50 \mathrm{~A}$ AC3, 110A ACl, 24VAC	K3-50A00	-000-6)	LA305030
Contactor, 3-pole, 22kW/50A AC3, 110A ACl, 110VAC	K3-50A00		LA305032
Contactor, 3-pole, 22kW/50A AC3, 110A ACl, 230VAC	K3-50A00	[-000-9,	LA305033
Contactor, 3-pole, 22kW/50A AC3, 110A ACl, 24VDC	K3-50A00=	-800-6	LA305035
$30 \mathrm{~kW} / 62 \mathrm{~A}$ AC-3, 120A AC-1, 3-pole			
Contactor, 3-pole, 30kW/62A AC3, 120A ACl, 24VAC	K3-62A00	- +0000	LA306230
Contactor, 3-pole, $30 \mathrm{~kW} / 62 \mathrm{~A} \mathrm{AC3}, 120 \mathrm{~A} \mathrm{ACl}, 48 \mathrm{VAC}$	K3-62A00		LA306231
Contactor, 3-pole, 30kW/62A AC3, 120A ACl, 110VAC	K3-62A00		LA306232
Contactor, 3-pole, 30kW/62A AC3, 120A ACl, 230VAC	K3-62A00	-000-9,	LA306233
Contactor, 3-pole, 30kW/62A AC3, 120A AC1, 400VAC	K3-62A00		LA306234
Contactor, 3-pole, 30kW/62A AC3, 120A ACl, 24VDC	K3-62A00=	- -6000	LA306235

37 -55kW / 74-115A AC-3, 130-200A AC-1, 3-pole

Contactor, 3-pole, 37kW/74A AC3, 130A ACl, 110VAC	K3-74A00		LA307432
Contactor, 3-pole, 37kW/74A AC3, 130A AC1, 230VAC	K3-74A00	-600-6	LA307433
Contactor, 3 -pole, $37 \mathrm{~kW} / 74 \mathrm{~A}$ AC3, 130A ACl, 400VAC	K3-74A00		LA307434
45kW/85A AC3, 150A AC1, 3-pole, 230VAC/DC	K3-90A00	-800-0-0	LA309033
$45 \mathrm{~kW} / 85 \mathrm{~A} \mathrm{AC3}, \mathrm{150A} \mathrm{ACl}, \mathrm{3-pole}, \mathrm{48VAC}$	K3-90A00		LA30903E
$55 \mathrm{~kW} / 115 \mathrm{~A}$ AC3, 200A AC1, 3-pole, 230VAC/DC	K3-115A00	-800-90000	LA311533

75-90kW / 150-175A AC-3, 230-250A AC-1, 3-pole			
$75 \mathrm{~kW} / 150 \mathrm{~A} \mathrm{AC3}, 230 \mathrm{~A} \mathrm{ACl}, 3$-pole, 230VAC/DC	K3-151A00	K3-176A00	LA31500H
$90 \mathrm{~kW} / 175 \mathrm{~A}$ AC3, 250A AC1, 3-pole, 230VAC/DC		LA31750H	

55-90kW / 115-175A AC-3, 200-250A AC-1, 4-pole

$55 \mathrm{~kW} / 115 \mathrm{~A} \mathrm{AC3}, 200 \mathrm{~A} \mathrm{ACl}, 4$-pole, 230VAC/DC	K3-116A00-40	LA311643
$75 \mathrm{~kW} / 150 \mathrm{~A} \mathrm{AC3,230A} \mathrm{AC1}, \mathrm{4-pole}, \mathrm{230VAC/DC}$	K3-151 A00-40	LA315043
$90 \mathrm{~kW} / 175 \mathrm{~A} \mathrm{AC3}, 250 \mathrm{~A} \mathrm{ACl}, 4$-pole, 230VAC/DC	K3-176A00-40	LA317543

Auxiliary contacts

front 1NO, 3A (230V AC-15) for LA2, LA3004-LA3115, LA4	HN10	-000-6	LA190100
front 1NC, 3A (230V AC-15) for LA2, LA3004-LA3115, LA4	HNO1	-000-6)	LA190101
lateral 1NO+1NC, 3A (230V AC-15) for K3-24 to K3-115	HB11		LA190134
front 1NC, 6A (230V, AC-15) for K2, K3-07 to K3-115, K4	HAO1	- - - -	LA190135
front 1NO, 6A (230V, AC-15) for K2, K3-07 to K3-115, K4	HA10	- -0×0	LA190137
front learly make NO, 3A (230V, AC-15) for K2, K3-07 to K3-115, K4	HNIOU	$+50-6$	LA190138
front 1 delayed NC, 3A (230V, AC-15) for K2, K3-07 to K3-115, K4	HNOIU	-000-0,	LA190139
front 2NO+2NC, 3A (230V, AC-15) for K3-116 to K3-316	HKT22	$+00-\infty$	LA190144
lateral 1NO+1NC, 3A (230V, AC-15) for K3-116 to K3-316	HKAll	- -0×0	LA190145
front 1NO+1NC, 3A (230V, AC-15) for K3-116 to K3-316	HKT 11		LA190146

Power Contactors LA, Size 3, 110-300kW

Schrack-Info

- Contactors from 110 kW up to $300 \mathrm{~kW}, 3$-pole
- K3-210 up to K3-316, in maximum 1 frontside auxiliary contact HKT as well as 2 "side mounted" auxiliary contacts HKA11 can be snapped on
- K3-450A22 and K3-550A22, 1 additional frontside auxiliary contact HKF22 can be snapped on
- K3-210 up to K3-316 suitable forThermal overload relais of type U320 (on request)
- K3-450 and K3-550 suitable for Thermal overload relais of type U800 (on request)
- K3-450 up to K3-550 retrofit with a 4th pole "NP" (neutral conductor)
- Mountable on mounting plate
- Further accessories find attached

Dimensions

Electromechanical Contactors Series LA

Power Contactors LA, Size 3, 110-300kW
Dimensions

Type	A	B	C	H	N
K3-450	40	10,5	4	233	206
K3-550	40	12,5	6	258	228

Circuit and Connection Diagrams

* HKF22 - standard mounted
** HKF22 - additional

DESCRIPTION	TYPE NO.	AVAILABLE
$\mathbf{1 1 0 - 3 0 0 k W} / \mathbf{2 1 0 - 5 5 0 A}$ AC-3, 230-250A AC-1, 3-pole		ORDER NO.
Contactor, 3pole, 110kW/210A AC3, 350A ACl, 230V AC/DC	K3-210A00	
Contactor, 3pole, 132kW/260A AC3, 230V AC/DC	K3-260A00	LA32103H
Contactor, 3pole, 160kW/315A AC3, 450A AC1, 230V AC/DC	K3-316A00	LA32603H
Contactor, 3pole,250kW/450A AC3 600A AC1, 2NO+2NC, 230VACDC	K3-450A22	LA33163H
Contactor, 3pole,300kW/550A AC3 760A AC1, 2NO+2NC, 230VACDC	K3-550A22	LA34500H

Auxiliary contacts

| front $1 N O+1 N C, 3 A(230 V, A C-15)$ for K3-116 to K3-316 | HKT11 | LA190146 |
| :--- | :--- | :--- | :--- |
| front 2NO+2NC, 3A (230V, AC-15) for K3-116 to K3-316 | HKT22 | LA 190144 |
| front 2NO+2NC, 3A (230V, AC-15) for K3-450 to K3-550 | HKF22 | LA190147 |
| lateral $1 N O+1 N C, 3 A(230 V, A C-15)$ for K3-116 to K3-316 | HKA11 | LA190145 |

Contactors for Photovoltaic Plants, 1000V DC

Schrack-Info

- Contactor 30A, 1000VDC DC-1
- For use as a string-switch in closed-circuit principle (in connection with Fire brigade - Emergency OFF - switch)
- In maximum 2 frontside auxiliary contacts HKT as well as 2 "side mounted" auxiliary contacts HKA 11 can be snapped on

K3PV-30

Rules and regulations according
IEC 60947-4-1, EN60947-4-1

1) $>40^{\circ} \mathrm{C} \ldots 1 \% /{ }^{\circ} \mathrm{C}$ reduction (e.g.: at $60^{\circ} \mathrm{C} 20 \%$ reduction $=24 \mathrm{~A}$)

Dimensions

[^4]Electromechanical Contactors Series LA

Contactors for Photovoltaic Plants, 1000V DC
Circuit and Connection Diagram

Contactors for Photovoltaic plants, 1000V DC

Contactor, 6-pole, 30A DC-1, 1000VDC, 230VAC	K3PV-30	$-\infty=0$ LA3030D3PV

Auxiliary contacts

front 2NO+2NC, 3A (230V, AC-15) for K3-116 to K3-316	HKT22		LA190144
front 1NO+1NC, 3A (230V, AC-15) for K3-116 to K3-316	HKTII		LA190146
lateral 1NO+1NC, 3A (230V, AC-15) for K3-116 to K3-316	HKAll	-000-0,	LA190145

Micro Auxiliary Contactors, Size M

\square Schrack-Info

- Auxiliary contactors 4-pole, 3A AC-15
- Worldwide smallest auxiliary contactor
- Auxiliary contactors not retrofit with additional auxiliary contacts
- Contacts suitable for electronic circuits according to IEC 60947-5-4
- Suitable for safety applications according IEC 60335-1
- Mountable to DIN-rail TS 15 or with adaptor to TS35

LAMH0370

Rated insulation voltage $\mathbf{U}_{\mathbf{i}}$	(VAC)	$\begin{gathered} \text { K0-04D } \\ 440 \\ \hline \end{gathered}$	
Thermal rated current l_{t+} at $40^{\circ} \mathrm{C}$ and 440VAC	(A)	5	
Utilization category AC-15			
Rated operational current I_{e} at $40^{\circ} \mathrm{C}$ and 230/440VAC	(A)	3/1	
Utilization category DC13 ${ }^{11}$			
Rated operational current I_{e} at $40^{\circ} \mathrm{C}$ up to 60VDC	(A)	0,5	
Ambient temperature (operation)	$\left({ }^{\circ} \mathrm{C}\right)$	$-40 . . .60$	
Permissible mounting position			
Rules and regulations according		IEC60947-5-1, EN 6	

Rules and regulations according

1) Contacts suitable for electronic circuits, according EN60947-5-4 for rated voltage 24VDC (Test ratings 17VDC, 5 mA) Positively guided contacts

Dimensions

Electromechanical Contactor Series LA

Micro Auxiliary Contactors, Size M
Circuit Diagrams
K0-04D40

Connection Diagrams

Mini Auxiliary Contactors, Size 1

\square Schrack-Info

- Auxiliary contactors 4-pole, 3A AC-15
- Auxiliary contactors with additional auxiliary contact HK retrofit
- Contacts suitable for electronic circuits according to IEC 60947-5-4
- Mountable on DIN-rail TS35

		K1-07
Rated insulation voltage $\mathbf{U}_{\mathbf{i}}$	(VAC)	690
Thermal rated current lih at $40^{\circ} \mathrm{C}$ and 440 VAC	(A)	10
Utilization category AC-15		
Rated operational current le at $40^{\circ} \mathrm{C}$ and $230 / 440 \mathrm{VAC}$	(A)	$3 / 1.6$
Utilization category DC13 ${ }^{1 /}$		
Rated operational current le at $40^{\circ} \mathrm{C}$ up to $60 / 110 / 220 \mathrm{VDC}$	(A)	2 / 0.4 / 0.1
Ambient temperature (operation)	$\left({ }^{\circ} \mathrm{C}\right)$	$-40 . . .+60$
Permissible mounting position		

Rules and regulations according
IEC 60947-5-1, EN 60947-5-1

1) Auxiliary contacts suitable for electronic circuits, according EN60947-5-4 for rated voltage 24 VDC (Test ratings 17VDC, 5 mA), positively guided contacts

Dimensions

Electromechanical Contactor Series LA

- Mini Auxiliary Contractors, Size 1

Circuit Diagrams

Connection Diagrams

Auxiliary Contactors, Size 3, DC Coil

Schrack-Info

- Auxiliary contactors DC operated, 4-pole, 4A AC-15, for electronic circuits
- Coil in energy saving wiring - with reduced power consumption of 2 W (at closed)
- Auxiliary contactors with in maximum 3 additional auxiliary contacts HN retrofit
- Contacts suitable for electronic circuits according to IEC 60947-5-4
- Mountable to DIN-rail TS35

Rated insulation voltage $\mathbf{U}_{\mathbf{i}}$	(VAC)	$\begin{gathered} \text { K3-07ND } \\ 690 \end{gathered}$	
Thermal rated current lth at $40^{\circ} \mathrm{C}$ and 440VAC	(A)	10	
Utilization category AC-15			
Rated operational current le at $40^{\circ} \mathrm{C}$ and 230/440VAC	(A)	4 / 1.6	
Utilization category DC13 ${ }^{\text {1/ }}$			
Rated operational current le at $40^{\circ} \mathrm{C}$ up to $60 / 110 / 220$ VDC	(A)	3.5 / 0.5 / 0.1	
Ambient temperature (operation)	$\left({ }^{\circ} \mathrm{C}\right)$	$-40 \ldots+60$	
Permissible mounting position			
Rules and regulations according		IEC 60947-5-1, EN 60947-5-1	
1) Auxiliary contacts suitable for electronic circuits, according EN60947-5-4 for rated voltage 24VDC (Test ratings 17VDC, 5mA) Positively guided contacts			

Dimensions

Electromechanical Contactors Series LA

Auxiliary Contactors, Size 3, DC Coil
Circuit Diagrams

Connection Diagrams

DESCRIPTION	TYPE NO.	AVAILABLE	ORDER NO.
4A, 4-pole			
for electronic circuits 4A, 24VDC, 4NO	K3-07ND40=	-000-9,	LA300475N
for electronic circuits 4A, 24VDC, 3NO+1NC	K3-07ND31 =		LA300485N
for electronic circuits 4A, 24VDC, 2NO+2NC	K3-07ND22=	-000-9,	LA300495N
for electronic circuits 4A, 24VDC, 4NC	K3-07ND04=	$\begin{array}{rrr} -\infty 0 & 0-\infty \\ \hline \end{array}$	LA3004A5N
Auxiliary contacts			
front 1NO, 3A (230V AC-15) for LA2, LA3004-LA3115, LA4	HN10		LA190100
front 1NC, 3A (230V AC-15) for LA2, LA3004-LA3115, LA4	HNO1	-50, -10	LA190101
front learly make NO, 3A (230V, AC-15) for K2, K3-07 to K3-115, K4	HNIOU	$+\infty=\sigma$	LA190138
front 1 delayed NC, 3A (230V, AC-15) for K2, K3-07 to K3-115, K4	HNOIU	$\begin{array}{rrr} \hline-000 & 0-\infty \\ \hline \end{array}$	LA190139

Capacitor Switching Contactors LA, Size 3

Schrack-Info

- Contactors for switching of capacitors from 12.5 kVAr up to 100 kVAr
- With included, magnetic uncoupled, Capacitor pre-loading resistors
- K3-18NK.. with one included auxiliary contact, in maximum 1 additional frontside auxiliary contact HN or HA can be snapped on
- K3-24K up to $\mathrm{K} 3-74 \mathrm{~K}$, in maximum 1 frontside auxiliary contact HN or HA as well as 2 "side mounted" auxiliary contacts HB can be snapped on
- K3-90K and K3-115K, in maximum 4 frontside auxiliary contacts HN or HA as well as 2 "side mounted" auxiliary contacts HB can be snapped on
- Mountable on DIN-rail TS35 or mounting plate, mouting of K3-90K and K3-115K on 2 DIN-rails TS35 or mounting plate

	K3-18NK	K3-24K	K3-32K	K3-50K	K3-62K	K3-74K	K3-90K	K3-115K
Rated insulation voltage $\mathrm{U}_{\mathbf{i}} \quad$ (VAC)	690							
Utilization category AC-1								
Rated operational current $l_{\text {th }}$ at $50^{\circ} \mathrm{C}$ and 690VAC (A)	32	45	60	100	110	120	155	190
Utilization category AC-6b								
Rated operational power at 400VAC (kVAr)	0... 12.5	10... 20	10... 25	20... 33.3	20... 50	20... 75	$33 \ldots 80$	$33 \ldots 100$
Rated operational current I_{e} at 50° and 380-400VAC (A)	0... 18	14.. 28	14... 36	$30 . . .48$	$30 \ldots 72$	$30 . .108$	50... 115	50.. 144
Ambient temperature (operation) (${ }^{\circ} \mathrm{C}$)	$-40 \ldots+60$							
Permissible mounting position								
Rules and regulations according	IEC 60947-4-1 / EN60947-4-1							

Electromechanical Contactors Series LA

Capacitor Switching Contactors LA, Size 3
Dimensions

Schematic Diagram

Auxiliary contacts installed:

Capacitor Switching Contactors LA, Size 3

- Connection Diagrams

Built-in auxiliary contacts:

1) 1 NO
2) 1 NC
3) no contacts

DESCRIPTION	TYPE NO.	AVAILABLE	ORDER NO.
12.5kVAr			
12.5kVAr 230VAC / 1 NO	K3-18NK10	[000-6,	LA3K1813N
12.5kVAr 230VAC / 1 NC	K3-18NKO1	+00\%-9,	LA3K1823N
20kVAr			
20kVAr 230VAC	K3-24K00	-80\%-9,	LA3K2433
25kVAr			
25kVAr 230VAC	K3-32K00		LA3K3233
33.3 kVAr			
33.3kVAr 230VAC	K3-50K00	-800-6	LA3K5033
50kVAr			
50kVAr 230VAC	K3-62K00	-00\%-6	LA3K6233
75kVAr			
75kVAr 230VAC	K3-74K00	-000-\%	LA3K7433
80kVAr			
80kVAr 230VAC	K3-90K00	- -50, - -	LA3K9033
100kVAr			
100kVAr 230VAC	K3-115K00		LA3K1A33
Auxiliary contacts			
front 1NO, 3A (230V AC-15) for LA2, LA3004-LA3115, LA4	HN1O	[-000-9,	LA190100
front 1NC, 3A (230V AC-15) for LA2, LA3004-LA3115, LA4	HNO1	-000-9,	LA190101
lateral 1NO+1NC, 3A (230V AC-15) for K3-24 to K3-115	HB11	$+800 \div$	LA190134
front 1NC, 6A (230V, AC-15) for K2, K3-07 to K3-115, K4	HAOI	-000-9,	LA 190135
front 1NO, 6A (230V, AC-15) for K2, K3-07 to K3-115, K4	HA10	$\begin{array}{rr} -\infty & -\infty \\ \hline \end{array}$	LA190137
front learly make NO, 3A (230V, AC-15) for K2, K3-07 to K3-115, K4	HN10U	-000-0,	LA190138
front 1delayed NC, 3A (230V, AC-15) for K2, K3-07 to K3-115, K4	HNOIU	-600-6	LA 190139

Electromechanical Contactors Series LA

Sidemounted Auxiliary Contacts for Contactors K3-24 to K3-115

- Schrack-Info
- Auxiliary contacts "side mounted" HB ...
- Mounting possible at left and right side of contactor
- Correct terminal designation of the auxiliary contacts depends on the mounting-side at contactor
- Auxiliary contact HB are suitable for electronic circuits according to IEC 60947-5-4

Circuit and Connection Diagram

Front- and Sidemounted Auxiliary Contacts for Contactors K3-116 to K3-316

- Schrack-Info

- Auxiliary contacts "frontside" HKT and "side mounted" HKA can be snapped on
- Correct terminal designation of the auxiliary contacts "side mounted" depends on the mounting-side at contactor

		Auxiliary contacts (front) HKT	Auxiliary contacts (side) HKA
Rated insulation voltage $\mathbf{U}_{\mathbf{i}}$	(VAC)	690	
Thermal rated current $\mathrm{l}_{\text {th }}$ at $40^{\circ} \mathrm{C}$ and 690VAC	(A)	10	10
Utilization category AC-15			
Rated operational current I_{e} at $40^{\circ} \mathrm{C}$ and $230 / 440 \mathrm{VAC}$	(A)	$3 / 1.5$	$3 / 1.6$
Utilization category DC13)			
Rated operational current I_{e} at $40^{\circ} \mathrm{C}$ up to $60 / 110 / 220 \mathrm{VDC}$	(A)	- / 0,5 / 0.2	- / $0.5 / 0.3$
Ambient temperature (operation)	$\left({ }^{\circ} \mathrm{C}\right)$	-40 ... +60	
Rules and regulations according		IEC 60947	247-5-1

1) Auxiliary contacts suitable for electronic circuits, according EN60947-5-4 for rated voltage 24 VDC (Test ratings 17VDC, 5 mA), positively guided contacts

Dimensions

Dimensions

Electromechanical Contactors Series LA

Front- and Sidemounted Auxiliary Contacts for Contactors K3-116 to K3-316
Circuit Diagrams

1) right mounted 2) left mounted

Connection Diagrams

1) right mounted
2) left mounted

DESCRIPTION	TYPE NO. AVAILABLE	ORDER NO.	
$\mathbf{3 A}, \mathbf{A C}-15$			
front $1 \mathrm{NO}+1 \mathrm{NC}, 3 \mathrm{~A}(230 \mathrm{~V}, \mathrm{AC}-15)$ for K3-116 to K3-316	HKT11		
front 2NO+2NC, 3A (230V, AC-15) for K3-116 to K3-316	HKT22	HKAll	LA190146
lateral 1NO+1NC, 3A (230V, AC-15) for K3-116 to K3-316	LA 190144		

- Frontmounted Auxiliary Contacts for Contactors K3-450 to K3-550

\square Schrack-Info
- Auxiliary contacts "frontside" HKF22 ...
- For extension of contactors K3-450 and K3-550 with integrated $2 \mathrm{NO}+2$ NC auxiliary contacts to $4 N O+4 N C$

		Auxiliary contacts (front) HKF
Rated insulation voltage $\mathbf{U}_{\mathbf{i}}$	(VAC)	690
Thermal rated current l_{t+} at $40^{\circ} \mathrm{C}$ and 690VAC	(A)	16
Utilization category AC-15		
Rated operational current I_{e} at $40^{\circ} \mathrm{C}$ and $230 / 440 \mathrm{VAC}$	(A)	$3 / 1.6$
Utilization category DC13)		
Rated operational current I_{e} at $40^{\circ} \mathrm{C}$ up to $60 / 110 / 220 \mathrm{VDC}$	(A)	- / 0.5 / 0.2
Ambient temperature (operation)	$\left({ }^{\circ} \mathrm{C}\right)$	-40 ... +60
Rules and regulations according		IEC 60947-5-1, EN 60947-5-1

1) Auxiliary contacts suitable for electronic circuits, according EN60947-5-4 for rated voltage 24VDC (Test ratings 17VDC, 5mA), positively guided contacts

Circuit and Connection Diagram

DESCRIPTION	TYPE NO.	AVAILABLE
$\mathbf{3 A}, \mathbf{A C}-15$		
front $2 N O+2 N C, 3 A(230 V, A C-15)$ for K3- 450 to $K 3-550$	HKF22	

3A, AC- 15

Electromechanical Contactors Series LA

Direct on Line Starters D.O.L. with Selector Switch

Schrack-Info

- Plastic-housings IP65, with selector switch Man-0-Auto, reset-button for thermal overload relais and included contactor K3
- Thermal overload relais $U 12 / 16$..K3 has to be ordered seperately (range according rated current of motor)
- Available for motor powers of up to 4 kW , up to 7.5 kW and up to 11 kW AC-3
- Cable entry cut-out for one cable gland M20x1.5 at upper side of housing, diameter $=20.4 \mathrm{~mm}$
- Cable entry cut-outs at rear side of housing, $4 \times$ diameter $=23 \mathrm{~mm}$

DESCRIPTION	TYPE NO.	AVAILABLE	ORDER NO.
DOL-starter $4 \mathrm{~kW} / 400 \mathrm{~V}$ AC3 (for U12/16E...K3)	P1-W10	P1-W18	P1-W22
DOL-starter $7.5 \mathrm{~kW} / 400 \mathrm{~V}$ AC3 (for U12/16E...K3)	LA003115K3		
DOL-starter $11 \mathrm{~kW} / 400 \mathrm{~V}$ AC3 (for U12/16E...K3)	LA003116K3		

LSD, LSS Contactors for Switching Motors, 3-pole, Size 00

LSDD0723

Schrack-Info

- Contactors from 3 kW up to $5.5 \mathrm{~kW}, 3$-pole with integrated auxiliary contact NC or NO
- Contactors LSDD with one included auxiliary contact NO retrofit with one additional auxiliary contact 1-pole LSZD05.. or 4-pole LSZDD2..
- Contactors LSDD with one included auxiliary contact NC retrofit with one additional auxiliary contact 1-pole LSZD05.. or 4-pole LSZDH5..
- Contactors LSSD can not be equipped by additional auxiliary contacts
- Contactors LSSD with reduced coil power consumption of 2,3W and coil voltage 17-30VDC, specially suitable for control by PLC
- Fitting surge supressors LSZD0001 up to LSZD0004
- Contactors LSDD and LSSD are suitable for use of Thermal overload relais type LSTD
- All auxiliary contacts are suitable for electronic circuits according EN 60947-5-4 (17VDC, 1mA)
- Coil and main contacts are not exchangeable
- Contactors LSDD and LSSD can be fitted by solder pin adaptor LSZDD002 for mounting to printed boards
- Mountable to DIN-rail TS35 or mounting plate
- Further accessories find attached

		$\begin{aligned} & \text { LSDD07 } \\ & \text { LSSDO7 } \end{aligned}$	$\begin{aligned} & \text { LSDD09 } \\ & \text { LSSD09 } \end{aligned}$	$\begin{aligned} & \text { LSDD12 } \\ & \text { LSSD12 } \end{aligned}$
Rated insulation voltage $\mathbf{U}_{\mathbf{i}}$	(VAC)		690	
Utilization category AC-1 $\cos \varphi=1$				
Rated power at 400VAC	(kW)	11	13	13
Rated operational current $\mathrm{I}_{\mathrm{e}}=\mathrm{I}_{\text {th }}$ at $40^{\circ} \mathrm{C}$ and 690 VAC	(A)	18	22	22
Utilization category AC-2 and AC-3				
Rated power at 400VAC	(kW)	3	4	5,5
Rated operational current $I_{\text {e }}$ at $380-440 \mathrm{VAC}$	(A)	7	9	12
Ambient temperature (operation)	$\left({ }^{\circ} \mathrm{C}\right)$		$-25 \ldots+60$	
Permissible mounting position				
Rules and regulations according		IEC 60947-4-1, EN60947-4-1		
		Included Auxiliary contacts		
Rated insulation voltage $\mathbf{U}_{\mathbf{i}}$	(VAC)	690		
Thermal rated current $l_{\text {th }}$ at $40^{\circ} \mathrm{C}$ and 690 VAC	(A)	10		
Utilization category AC-15				
Rated operational current I_{e} at $40^{\circ} \mathrm{C}$ and $230 / 400$ VAC	(A)	6/3		
Utilization category DC13 1)				
Rated operational current $I_{\text {e }}$ at $40^{\circ} \mathrm{C}$ up to $60 / 110 / 220 \mathrm{VDC}$	(A)	2/1/0,3		
Ambient temperature (operation)	$\left({ }^{\circ} \mathrm{C}\right)$	$-25 \ldots+60$		
Rules and regulations according		IEC 60947-5-1, EN 60947-5-1		
1) Auxiliary contacts suitable for electronic circuits, according EN60947-5-4 for rated voltage 24VDC (Test ratings 17VDC, 1 mA). Positively guided contacts.				

Electromechanical Contactors Series ALEA LS

LSD, LSS Contactors for Switching Motors, 3-pole, Size 00
Dimensions

Screw terminals with surge suppressor, auxiliary contact block and mounted thermal overload relay LSTD.
Lateral distance to grounded components $=6 \mathrm{~mm}$.
2) Auxiliary contact block
3) Surge suppressor
4) Drilling pattern
5) Auxiliary contact block 1-pole

Dimensions

3) Surge suppressor
4) Drilling pattern

Circuit Diagrams

LSDD/LSSD

Connection Diagrams

LSD, LSS Contactors for Switching Motors, 3-pole, Size 00

DESCRIPTION	TYPE NO.	AVAILABLE	ORDER NO.
Size 00 - type LSDD - 7A			
Contactor 3kW / 7A AC-3, 24VAC, 50 Hz , with 1 NO , size 00	LSDD		LSDD0710
Contactor 3kW / 7A AC-3, 24VAC, 50 Hz , with 1 NC , size 00	LSDD	- $+0 \times 0$	LSDD0720
Contactor 3kW / 7A AC-3, 110VAC, 50 Hz , with 1 NO , size 00	LSDD		LSDD0712
Contactor 3kW / 7A AC-3, 110VAC, 50 Hz , with 1 NC , size 00	LSDD	-mon	LSDD0722
Contactor 3kW / 7A AC-3, 230VAC, $50 / 60 \mathrm{~Hz}$, with 1 NO , size 00	LSDD		LSDD0713
Contactor 3kW / 7A AC-3, 230VAC, $50 / 60 \mathrm{~Hz}$, with 1 NC , size 00	LSDD		LSDD0723
Contactor 3kW / 7A AC-3, 24VDC, with 1 NO, size 00	LSDD	- -1000	LSDD0715
Contactor 3kW / 7A AC-3, 24VDC, with 1 NC, size 00	LSDD	$+\infty 0$	LSDD0725
Size 00 - type LSDD - 9A			
Contactor $4 \mathrm{~kW} / 9 \mathrm{~A} \mathrm{AC}-3,24 \mathrm{VAC}, 50 \mathrm{~Hz}$, with 1 NO , size 00	LSDD	-600-6	LSDD0910
Contactor $4 \mathrm{~kW} / 9 \mathrm{~A}$ AC-3, $24 \mathrm{VAC}, 50 \mathrm{~Hz}$, with 1 NC , size 00	LSDD	$\underline{-\infty} 0$	LSDD0920
Contactor 4kW / 9A AC-3, 110VAC, 50 Hz , with 1 NO , size 00	LSDD	-000-0,	LSDD0912
Contactor 4kW / 9A AC-3, 110VAC, 50 Hz , with 1 NC , size 00	LSDD		LSDD0922
Contactor 4kW / 9A AC-3, 230VAC, $50 / 60 \mathrm{~Hz}$, with 1 NO , size 00	LSDD		LSDD0913
Contactor 4kW / 9A AC-3, 230VAC, $50 / 60 \mathrm{~Hz}$, with 1 NC , size 00	LSDD		LSDD0923
Contactor 4kW / 9A AC-3, 24VDC, with 1 NO, size 00	LSDD	$\begin{array}{r} -600 \\ \hline-8 \\ \hline \end{array}$	LSDD0915
Contactor 4kW / 9A AC-3, 24VDC, with 1 NC, size 00	LSDD	- -0000	LSDD0925
Size 00 - type LSDD - 12A			
Contactor 5.5kW / 12A AC-3, 24VAC, 50 Hz , with 1 NO , size 00	LSDD		LSDD 1210
Contactor 5.5kW / 12A AC-3, 24VAC, 50 Hz , with 1 NC , size 00	LSDD	- -1000	LSDD1220
Contactor $5.5 \mathrm{~kW} / 12 \mathrm{~A} \mathrm{AC}-3,110 \mathrm{VAC}, 50 \mathrm{~Hz}$, with 1 NO , size 00	LSDD	- -0×0	LSDD1212
Contactor $5.5 \mathrm{~kW} / 12 \mathrm{~A} \mathrm{AC}-3,110 \mathrm{VAC}, 50 \mathrm{~Hz}$, with 1 NC , size 00	LSDD	- $-6-10$	LSDD 1222
Contactor 5.5kW/12A AC-3, 230VAC, $50 / 60 \mathrm{~Hz}$, with 1 NO , size 00	LSDD	0×0	LSDD 1213
Contactor $5.5 \mathrm{~kW} / 12 \mathrm{~A} \mathrm{AC}-3,230 \mathrm{VAC}, 50 / 60 \mathrm{~Hz}$, with 1 NC , size 00	LSDD	- -1000	LSDD1223
Contactor $5.5 \mathrm{~kW} / 12 \mathrm{~A} \mathrm{AC}-3,24 \mathrm{VDC}$, with 1 NO , size 00	LSDD	- -1000	LSDD1215
Contactor 5.5kW / 12A AC-3, 24VDC, with 1 NC, size 00	LSDD	$+00-\infty$	LSDD1225
Size 00 - type LSSD for PLC - 7A			
$3 \mathrm{~kW} / 400 \mathrm{~V}, 1 \mathrm{NO}, 17-30 \mathrm{VDC}$ for PLC, size 00	LSSD	- -1000	LSSD071G
$3 \mathrm{~kW} / 400 \mathrm{~V}, 1 \mathrm{NC}, 17-30 \mathrm{VDC}$ for PLC, size 00	LSSD		LSSD072G
Size 00 - type LSSD for PLC - 9A			
$4 \mathrm{~kW} / 400 \mathrm{~V}, 1 \mathrm{NO}, 17-30 \mathrm{VDC}$ for PLC, size 00	LSSD		LSSD091G
4kW/400V, 1 NC, 17-30VDC for PLC, size 00	LSSD	- $-\infty$	LSSD092G
Size 00 - type LSSD for PLC - 12A			
$5.5 \mathrm{~kW} / 400 \mathrm{~V}, 1 \mathrm{NO}, 17-30 \mathrm{VDC}$ for PLC, size 00	LSSD	$\begin{array}{lll} \hline-\infty & -\infty \\ \hline \end{array}$	LSSD121G
$5.5 \mathrm{~kW} / 400 \mathrm{~V}, 1 \mathrm{NC}, 17-30 \mathrm{VDC}$ for PLC, size 00	LSSD	0×0	LSSD122G
Auxiliary contacts			
1 NC size 00, DIN 50005, wiring from bottom	LSZD		LSZD0501
1NO size 00, DIN 50005, wiring from bottom	LSZD	- -1000	LSZD0510
1NC size 00, DIN 50012	LSZD	$+000-\infty$	LSZDD201
1NO+2NC size 00, DIN 50012	LSZD	- -1000	LSZDD212
1NO+3NC size 00, DIN 50012	LSZD	$\underline{-60} 0$	LSZDD213
2NO+2NC size 00, DIN 50012	LSZD	$+\infty=0$	LSZDD222
2NO+2NC size 00, DIN 50005	LSZD	- -00000	LSZDH522
3NO+1NC size 00, DIN 50005	LSZD	$+\infty=\infty$	LSZDH531
4NO size 00, DIN 50005	LSZD	- -0×0	LSZDH540

Electromechanical Contactors Series ALEA LS

LSD, LSS Contactors for Switching Motors, 3-pole, Size 0

Schrack-Info

- Contactors from 4 kW up to $11 \mathrm{~kW}, 3$-pole
- Contactors LSDO retrofit in maximum with 6 auxiliary contacts (four 1-pole auxiliary contacts LSZOD0.., LSZOD9.. or one 4-pole LSZOD 1.., as well as one "side mounted" LSZOD711) but in maximum 4 NC
- Contactors LSSO retrofit in maximum with 2 auxiliary contacts (two 1 -pole auxiliary contacts LSZODO.. or LSZOD9..)
- Contactors LSSO with reduced coil power consumption of $4,2 \mathrm{~W}$ and coil voltage of 17-30VDC, suitable for control by PLC
- All auxiliary contacts are suitable for electronic circuits according EN 60947-5-4 (17VDC, 1mA)
- Fitting surge supressors LSZD0005, LSZD0006, LSZ00001 up to LSZ00003
- Contactors LS. 0 are suitable for use of Thermal overload relais of type LSTO
- Coil and main contacts are exchangeable - on request
- Mountable to DIN-rail TS35 or mounting plate
- Further accessories find attached

		LSD009	LSDO12 / LSSO12	LSDO17 / LSSO17	LSDO25 / LSSO25
Rated insulation voltage $\mathbf{U}_{\mathbf{i}}$	(VAC)	690			
Utilization category AC-1 $\cos \varphi=1$					
Rated power at 400VAC	(kW)	23			
Rated operational current $\mathrm{I}_{\mathrm{e}}=\mathrm{I}_{\mathrm{l}}$ at $40^{\circ} \mathrm{C}$ and 690VAC	(A)	40			
Utilization category AC-2 and AC-3					
Rated power at 400VAC	(kW)	4	5,5	7,5	11
Rated operational current I_{e} at $380-440 \mathrm{VAC}$	(A)	9	12	17	25
Ambient temperature (operation)	$\left({ }^{\circ} \mathrm{C}\right)$	$-25 \ldots+60$			
Permissible mounting position					
Rules and regulations according		IEC 60947-4-1, EN60947-4-1			

LSD, LSS Contactors for Switching Motors, 3-pole, Size 0
Dimensions

Screw terminals with surge suppressor, auxiliary contact block and mounted thermal overload relay. Lateral distance to grounded components $=6 \mathrm{~mm}$.
$a=3 \mathrm{~mm}$ at $<240 \mathrm{~V} ; \mathrm{a}=7 \mathrm{~mm}$ at $>240 \mathrm{~V}$
$b=D C 10 \mathrm{~mm}$ deeper than $A C$

1) Auxiliary contact block, laterally mountable
2) Auxiliary contact block, mountable on the front, 1 and 4 pole
3) Surge suppressor
4) Drilling pattern

Circuit and Connection Diagram

Terminal designations according to EN 50012

Electromechanical Contactors Series ALEA LS

LSD, LSS Contactors for Switching Motors, 3-pole, Size 0

DESCRIPTION	TYPE NO.	AVAILABLE	ORDER NO.
Size 0 - type LSDO-9A			
Contactor $4 \mathrm{~kW} / 9 \mathrm{~A} \mathrm{AC}-3,24 \mathrm{VAC}, 50 \mathrm{~Hz}$, size 0	LSDO	[000-980	LSD00930
Contactor 4kW / 9A AC-3, 24VDC, size 0	LSDO	-000-9,	LSD00935
Contactor 4kW / 9A AC-3, 110VAC, 50 Hz , size 0	LSDO	[-000-8,	LSD00932
Contactor 4kW / 9A AC-3, 230VAC, $50 / 60 \mathrm{~Hz}$, size 0	LSDO	- \times -	LSD00933
Size 0-type LSDO-12A			
Contactor 5.5kW / 12A AC-3, 24VDC, size 0	LSDO	- -2000	LSD01235
Contactor 5.5kW / 12A AC-3, 24VAC, 50 Hz , size 0	LSDO	-80000]	LSD01230
Contactor $5.5 \mathrm{~kW} / 12 \mathrm{AAC}-3,110 \mathrm{VAC}, 50 \mathrm{~Hz}$, size 0	LSDO	[-000-6	LSD01232
Contactor $5.5 \mathrm{~kW} / 12 \mathrm{~A}$ AC-3, 230VAC, $50 / 60 \mathrm{~Hz}$, size 0	LSDO	-000-9,	LSD01233
Size 0 - type LSDO-17A			
Contactor $7.5 \mathrm{~kW} / 17 \mathrm{~A} \mathrm{AC}-3,24 \mathrm{VAC}, 50 \mathrm{~Hz}$, size 0	LSDO		LSD01730
Contactor $7.5 \mathrm{~kW} / 17 \mathrm{~A} \mathrm{AC}-3,24 \mathrm{VDC}$, size 0	LSDO		LSD01735
Contactor $7.5 \mathrm{~kW} / 17 \mathrm{AAC}-3,110 \mathrm{VAC}, 50 \mathrm{~Hz}$, size 0	LSDO	[-80-8,	LSD01732
Contactor 7.5kW / 17A AC-3, 230VAC, $50 / 60 \mathrm{~Hz}$, size 0	LSDO	- -6000	LSD01733
Contactor $7.5 \mathrm{~kW} / 17 \mathrm{~A} \mathrm{AC}-3,400 \mathrm{VAC}, 50 \mathrm{~Hz}$, size 0	LSDO	-00000,	LSD01734
Size 0 - type LSDO-25A			
Contactor $11 \mathrm{~kW} / 25 \mathrm{~A} \mathrm{AC}-3,24 \mathrm{VAC}, 50 \mathrm{~Hz}$, size 0	LSDO	- -20008	LSD02530
Contactor $11 \mathrm{~kW} / 25 \mathrm{~A}$ AC-3, 24VDC, size 0	LSDO		LSD02535
Contactor $11 \mathrm{~kW} / 25 \mathrm{~A}$ AC-3, 110VAC, 50 Hz , size 0	LSDO	-000-0,	LSD02532
Contactor $11 \mathrm{~kW} / 25 \mathrm{~A}$ AC-3, 230VAC, $50 / 60 \mathrm{~Hz}$, size 0	LSDO	- +000	LSD02533
Size 0-type LSSO for PLC - 12A			
Contactor 5.5kW, AC-3, 17-30VDC, for PLC, size 0	LSSO	- $+0 \times 0$	LSSO123H
Size 0 - type LSSO for PLC - 17A			
Contactor 7.5kW, AC-3, 17-30VDC, for PLC, size 0	LSSO	-80\%-9	LSS0173H
Size 0-type LSSO for PLC - 25A			
Contactor 11.0kW, AC-3, 17-30VDC, for PLC, size 0	LSSO		LSS0253H
Auxiliary contacts			
Auxiliary contact block for size 0-12, 1NC	LSZO	$+50$	LSZ0D001
Auxiliary contact block for size 0-12, 1NO	LSZO		LSZOD010
Auxiliary contact block for size 0-12,1NO + 3 NC	LSZO	- $-\times-6$	LSZOD113
Auxiliary contact block for size 0-12, 2NO + 2NC, DIN EN 50012	LSZO	[-80-9,	LSZOD 122
Auxiliary contact block for size 0-12, 2NO + 2NC, DIN EN 50005	LSZO	-700-6-9,	LSZOD 122F
Auxiliary contact block for size 0-12, 3NO + 1NC, DIN EN 50012	LSZO	$+000-6$	LSZOD131
Auxiliary contact block for size 0-12, 3NO + 1NC, DIN EN 50005	LSZO	-5000	LSZOD131F
Auxiliary contact block for size 0-12, 4NO, DIN EN 50005	LSZO	[-000-9,	LSZOD140F
Auxiliary contact block for size $0-12,1 \mathrm{NO}+1 \mathrm{NC}$, 1. position	LSZO	$+\infty=\infty$	LSZ0D711
Auxiliary contact block for size 0-12, 1NC, delayed	LSZO		LSZ0D901
Auxiliary contact block for size 0-12, 1NO, delayed	LSZO		LSZ0D910

ISD Contactors for Switching Motors, 3-pole, Size 2

\square Schrack-Info

- Contactors from 15 kW up to $22 \mathrm{~kW}, 3$-pole
- Contactors LSD2 can be fitted in maximum with 6 auxiliary contacts (four 1-pole auxiliary contacts LSZODO.., LSZOD9.. or one 4-pole LSZOD 1.., as well as one "side mounted" LSZOD711) but in maximum 4 NC
- All auxiliary contacts are suitable for electronic circuits according EN 60947-5-4 (17VDC, 1 mA)
- Fitting surge supressors LSZ00001, LSZ00002 or LSZ20001
- Contactors LSD2 are suitable for use of Thermal overload relais of type LST2
- Coil and main contacts are exchangeable - on request
- Mountable to DIN-rail TS35 or mounting plate
- Further accessories find attached

		LSD232	LSD240	LSD250
Rated insulation voltage $\mathrm{U}_{\mathbf{i}}$	(VAC)	690		
Utilization category AC-1 $\cos \varphi=1$				
Rated power at 400VAC	(kW)	$31 \quad 38$		38
Rated operational current $\mathrm{I}_{\mathrm{e}}=\mathrm{I}_{\text {th }}$ at $40^{\circ} \mathrm{C}$ and 690VAC	(A)	50	60	60
Utilization category AC-2 and AC-3				
Rated power at 400VAC	(kW)	15	18,5	22
Rated operational current I_{e} at 500/690VAC	(A)	$32 / 20$	40/24	50/24
Ambient temperature (operation)	$\left({ }^{\circ} \mathrm{C}\right)$	$-25 \ldots+60$		
Permissible mounting position				
Rules and regulations according		IEC 60947-4-1, EN60947-4-1		

Dimensions

[^5]Electromechanical Contactors Series ALEA LS

- LSD Contactors for Switching Motors, 3-pole, Size 2

Circuit and Connection Diagram

Terminal designations according to EN 50012

DESCRIPTION	TYPE NO.	AVAILABLE	ORDER NO.
Size 2 - type LSD2-32A			
Contactor 15kW / 32A AC-3 24VAC, 50 Hz , size 2	LSD2	-000000	LSD23230
Contactor 15kW / 32A AC-3, 24VDC, size 2	LSD2	- -1000	LSD23235
Contactor 15kW / 32A AC-3 110VAC, 50 Hz , size 2	LSD2		LSD23232
Contactor 15kW / 32A AC-3 230VAC, $50 / 60 \mathrm{~Hz}$, size 2	LSD2	- +0000	LSD23233
Size 2 - type LSD2-40A			
Contactor 18,5kW / 40A AC-3, 24VAC, 50Hz, size 2	LSD2	-600-9,	LSD24030
Contactor 18,5kW / 40A AC-3, 24VDC, size 2	LSD2	-000-9,	LSD24035
Contactor 18,5kW / 40A AC-3, 110VAC, 50 Hz , size 2	LSD2	$+\infty 0=0$	LSD24032
Contactor 18,5kW / 40A AC-3, 230VAC, $50 / 60 \mathrm{~Hz}$, size 2	LSD2	-00\%-8)	LSD24033

Size 2 - type LSD2-50A

Contactor 22kW / 50A AC-3, 24VAC, 50Hz, size 2	LSD2	[-000-9,	LSD25030
Contactor 22kW / 50A AC-3, 24VDC, size 2	LSD2		LSD25035
Contactor $22 \mathrm{~kW} / 50 \mathrm{~A}$ AC-3, $110 \mathrm{VAC}, 50 \mathrm{~Hz}$, size 2	LSD2	[-000.0]	LSD25032
Contactor 22kW / 50A AC-3, 230VAC, $50 / 60 \mathrm{~Hz}$, size 2	LSD2	- +00006	LSD25033
Auxiliary contacts			
Auxiliary contact block for size 0-12, 1NC	LSZO	- -6000	LSZ0D001
Auxiliary contact block for size 0-12, 1NO	LSZO	-000-0,	LSZ0D010
Auxiliary contact block for size 0-12, 1NO + 3NC	LSZO		LSZOD113
Auxiliary contact block for size 0-12, 2NO + 2NC, DIN EN 50012	LSZO	[-000,	LSZOD122
Auxiliary contact block for size 0-12, 2NO + 2NC, DIN EN 50005	LSZO	$\begin{array}{rrr} \hline-\infty 0 & 0-\infty \\ \hline \end{array}$	LSZOD122F
Auxiliary contact block for size 0-12, 3NO + 1NC, DIN EN 50012	LSZO	- -0×0	LSZOD 131
Auxiliary contact block for size 0-12, 3NO + 1NC, DIN EN 50005	LSZO	$+\infty=-\infty$	LSZ0D131F
Auxiliary contact block for size 0-12, 4NO, DIN EN 50005	LSZO	$+00 \div 0$	LSZOD140F
Auxiliary contact block for size 0-12, 1NO + 1NC, 1. position	LSZO	- -1000	LSZ0D711
Auxiliary contact block for size 0-12, 1NC, delayed	LSZO		LSZ0D901
Auxiliary contact block for size 0-12, 1NO, delayed	LSZO		LSZOD910

LLD Contactors for Switching Motors, 3-pole, Size 3

Schrack-Info

- Contactors from 30 kW up to $45 \mathrm{~kW}, 3$-pole
- Contactors LSD3 can be fitted in maximum with 8 auxiliary contacts (four 1-pole auxiliary contacts LSZOD0.., LSZOD9.. or one 4-pole LSZOD 1.., as well as 2 "side mounted" auxiliary contacts LSZOD711 or LSZ3D811) but in maximum 4 NC
- All auxiliary contacts are suitable for electronic circuits according EN 60947-5-4 (17VDC, 1 mA)
- Fitting surge supressors LSZ00001, LSZ00002 or LSZ20001
- Contactors LSD3 are suitable for use of Thermal overload relais of type LST3
- Coil and main contacts are exchangeable - on request
- Mountable to high DIN-rail TH35, TH75 or mounting plate
- Further accessories find attached

		LSD363	LSD380	LSD395
Rated insulation voltage U_{i}	(VAC)	690		
Utilization category AC-1 $\cos \varphi=1$				
Rated power at 400VAC	(kW)	59	66	66
Rated operational current $I_{e}=I_{\text {th }}$ at $40^{\circ} \mathrm{C}$ and 690VAC	(A)	100	120	120
Utilization category AC-2 and AC-3				
Rated power at 400VAC	(kW)	30	37	45
Rated operational current I_{e} at 500/690VAC	(A)	65/47	80/58	95/58
Ambient temperature (operation)	$\left({ }^{\circ} \mathrm{C}\right)$	$-25 \ldots+60$		
Permissible mounting position				
Rules and regulations according		IEC 60947-4-1, EN60947-4-1		

Electromechanical Contactors Series ALEA LS

LSD Contactors for Switching Motors, 3-pole, Size 3

Dimensions

Screw terminals with surge suppressor, auxiliary contact block and mounted thermal overload relay.
$\mathrm{a}=0 \mathrm{~mm}$ with varistor $<240 \mathrm{~V}$, diode assembly
$a=3.5 \mathrm{~mm}$ with varistor and $>240 \mathrm{~V}$
$a=17 \mathrm{~mm}$ with RC element
$b=D C 13 \mathrm{~mm}$ deeper than $A C$

1) Auxiliary contact block, laterally mountable
2) Auxiliary contact block, mountable on the front, 1-and 4-pole, same dimensions for versions with screw or Cage Clamp terminals
3) Surge suppressor
4) Drilling pattern
5) For mounting on TH 35 standard mounting rail according to EN 60715 (15 mm deep) or TH 75 standard mounting rail according to EN 60715 6) Allen screw 4 mm

Circuit and Connection Diagram

[^6]LSD Contactors for Switching Motors, 3-pole, Size 3

DESCRIPTION	TYPE NO.	AVAILABLE	ORDER NO.
Size 3 - type LSD3-65A			
Contactor 30kW / 65A AC-3, 24VAC, 50Hz, size 3	LSD3		LSD36530
Contactor 30kW / 65A AC-3, 24VDC, size 3	LSD3		LSD36535
Contactor 30kW / 65A AC-3, 110VAC, 50 Hz , size 3	LSD3	-000-7	LSD36532
Contactor 30kW / 65A AC-3, 230VAC, $50 / 60 \mathrm{~Hz}$, size 3	LSD3	-000-m	LSD36533
Contactor 30kW/65A AC-3, w. $2 \mathrm{~N} / \mathrm{O}+2 \mathrm{NC}, 230 \mathrm{VAC}, 50 \mathrm{~Hz}$, size 3	LSD3	$\begin{array}{lll} \hline-\infty 0 & 0-\infty \\ \hline \end{array}$	LSD36553

Size 3 - type LSD3 - 80A

Contactor $37 \mathrm{~kW} / 80 \mathrm{~A}$ AC-3, $24 \mathrm{VAC}, 50 \mathrm{~Hz}$, size 3	LSD3		LSD38030
Contactor 37kW / 80A AC-3, 24VDC, size 3	LSD3	- -0000	LSD38035
Contactor $37 \mathrm{~kW} / 80 \mathrm{~A}$ AC-3, with $2 \mathrm{NO}+2 \mathrm{NC}, 24 \mathrm{VAC}, 50 \mathrm{~Hz}$, size 3	LSD3		LSD38050
Contactor 37kW / 80A AC-3, I10VAC, 50Hz, size 3	LSD3	$+\infty 0$	LSD38032
Contactor 37kW/80A AC-3, with 2 NO+2 NC, I10VAC, 503	LSD3		LSD38052
Contactor 37kW / 80A AC-3, 230VAC, 50/60Hz, size 3	LSD3	$+\infty=0$	LSD38033
Size 3 - type LSD3-95A			
Contactor 45kW / 95A AC-3, 24VAC, 50Hz, size 3	LSD3	- 700008	LSD39530
Contactor 45kW / 95A AC-3, 24VDC, size 3	LSD3	[000-9,	LSD39535
Contactor 45kW / 95A AC-3, 230VAC, 50/60Hz, size 3	LSD3	- +000	LSD39533
Contactor 45kW/95A AC-3, with $2 \mathrm{NO}+2 \mathrm{NC}, 230 \mathrm{VAC}, 503$	LSD3	$+\infty=0$	LSD39553
Auxiliary contacts			
Auxiliary contact block for size 0-12, 1NC	LSZO	[000-6,	LSZ0D001
Auxiliary contact block for size 0-12, 1NO	LSZO	$+\infty=-\infty$	LSZ0D010
Auxiliary contact block for size 0-12, 1 NO + 3NC	LSZO	- -0×0	LSZOD113
Auxiliary contact block for size 0-12, 2NO + 2NC, DIN EN 50012	LSZO	$+\infty 0$	LSZOD 122
Auxiliary contact block for size 0-12, 2NO + 2NC, DIN EN 50005	LSZO	[000-6)	LSZOD122F
Auxiliary contact block for size 0-12, 3NO + 1NC, DIN EN 50012	LSZO	$\begin{array}{lll} \hline-\infty & -\infty \\ \hline \end{array}$	LSZOD131
Auxiliary contact block for size 0-12,3NO + 1NC, DIN EN 50005	LSZO	$+\infty=0$	LSZOD131F
Auxiliary contact block for size 0-12, 4NO, DIN EN 50005	LSZO	--000-0,	LSZOD140F
Auxiliary contact block for size $0-12,1 \mathrm{NO}+1 \mathrm{NC}$, 1. position	LSZO	$\begin{array}{ll} \hline-00 & 0-8 \\ \hline \end{array}$	LSZ0D711
Auxiliary contact block for size 0-12, 1NC, delayed	LSZO		LSZ0D901
Auxiliary contact block for size 0-12, 1NO, delayed	LSZO		LSZOD910
Auxiliary contact block for size 3-12,1NO + 1NC, 2. position	LSZ3	$+\infty=0$	LSZ3D811

LSD Contactors and Vacuum Contactors, 3-pole, Size 6 / 10 / 12 / 14

LSDH64G3

Schrack-Info

- Contactors LSD6115F are fitted with box terminals up to $70 \mathrm{~mm}^{2}$
- All other contactor types fitted with screw connection (busbar connection). Box terminals on request
- Contactors LSD6 up to LSDG are fitted with a withdrawable coil unit. At mounting contactor, please to consider dimension "k" (clearance upwards) for exchanging the coil
- Contactors LSD6 up to LSDG - fitted as standard with 2 "side mounted" auxiliary contacts LSZOD711 (2S+2Ö) - can be extended in maximum up to 8 auxiliary contacts (additional four 1-pole auxiliary contacts LSZODO.., LSZOD9.. or one 4-pole LSZOD $1 .$. , or two "side mounted" auxiliary contacts LSZ3D811) but in maximum 4 NC .
- All auxiliary contacts are suitable for electronic circuits according EN 60947-5-4 (17VDC, 1mA)
- Vacuum-Contactors LSDH - fitted as standard with 8 "side mounted" auxiliary contacts (4S+4Ö) can not be extended by additional auxiliary contacts
- Fitting surge supressors (RC-units) for contactors LSD6 up to LSDG - LSZ60001.
- Vacuum-Contactors LSDH are already fitted with one integrated varistor-circuit and a "burn-off" indication of main contacts, can be seen from outside
- Contactors only suitable for electronic overload relais - on request
- Coil and main contacts for contactors LSD6 up to LSDG are exchangeable - on request
- Vacuum tubes for contactors LSDH - on request
- Mountable to mounting plate
- Further accessories find attached

LSD Contactors and Vacuum Contactors, 3-pole, Size 6 / 10 / 12 / 14

		LSDG41	LSDG51	LSDH6	LSDH8
Rated insulation voltage $\mathbf{U}_{\mathbf{i}}$	(VAC)	1000			
Utilization category AC-1 $\cos \varphi=1$					
Rated power at 400VAC	(kW)	263	362	415	558
Rated operational current $\mathrm{I}_{\mathrm{e}}=\mathrm{I}_{\mathrm{t}}$ at $40^{\circ} \mathrm{C}$ and 690 VAC	(A)	430	610	700	910
Utilization category AC-2 and AC-3					
Rated power at 400VAC	(kW)	231	291	347	450
Rated operational current $I_{\text {e }}$ at 690/1000VAC	(A)	400/400	500/450	630/435	820/580
Ambient temperature (operation)	$\left({ }^{\circ} \mathrm{C}\right)$	$-25 \ldots+60$			
Permissible mounting position				$\sqrt[3]{5^{\circ}}{ }^{22,5^{\circ}}$	
Rules and regulations according			IEC 60947	0947-4-1	

		Inkludierte Auxiliary contacts
Rated insulation voltage $\mathbf{U}_{\mathbf{i}}$	(VAC)	690
Thermal rated current Ith at $40^{\circ} \mathrm{C}$ and 690 VAC	(A)	10
Utilization category AC-15		
Rated operational current $\mathrm{I}_{\text {e }}$ at $40^{\circ} \mathrm{C}$ and $230 / 400$ VAC	(A)	5,6/3,6
Utilization category DC13		
Rated operational current $I_{\text {e }}$ at $40^{\circ} \mathrm{C}$ up to $60 / 110 / 220 \mathrm{VDC}$	(A)	5/1,14/0,48
Ambient temperature (operation)	$\left({ }^{\circ} \mathrm{C}\right)$	-25 ... +60
Rules and regulations according		$\begin{gathered} \hline \text { IEC } 60947-5-1, \text { EN } \\ 60947-5-1 \end{gathered}$

Electromechanical Contactors Series ALEA LS

LSD Contactors and Vacuum Contactors, 3-pole, Size 6 / 10 / 12 / 14
Dimensions: LSD6 Contactors, Size 6

Distance from grounded parts: Lateral: 10 mm , Front: $20 \mathrm{~mm}, \mathrm{k}$
$=120 \mathrm{~mm}$ (minimum clearance for removing the withdrawable coil)

1) 2nd auxiliary contact block, lateral
2) Box terminals*
3) Auxiliary contact block, mountable on the front
4) Drilling pattern
5) RC element
*LSD6115F with box terminal, LSD6155F and LSD6195F without box terminal

LSD Contactors and Vacuum Contactors, 3-pole, Size 6 / 10 / 12 / 14
Dimensions: LSDE Contactors, Size 10

Distance from grounded parts: Lateral: 10 mm , Front: $20 \mathrm{~mm}, \mathrm{k}=150 \mathrm{~mm}$ (minimum clearance for removing the withdrawable coil)

1) 2nd auxiliary contact block, lateral
2) Box terminals, optional
3) Auxiliary contact block, mountable on the front
4) Drilling pattern
5) RC element

Electromechanical Contactors Series ALEA LS

- LSD Contactors and Vacuum Contactors, 3-pole, Size 6 / 10 / 12 / 14

Dimensions: LSDG Contactors, Size 12

Distance from grounded parts: Lateral: 10 mm , Front: $20 \mathrm{~mm}, \mathrm{k}=150 \mathrm{~mm}$ (minimum clearance for removing the withdrawable coil)

1) 2nd auxiliary contact block, lateral
2) Box terminals, optional
3) Auxiliary contact, mountable on the front 5) Drilling pattern
4) $R C$ element

Dimensions: LSDH6 Vacuum Contactors, Size 14

1) With box terminals for laminated copper bars (on request). Terminal cover for touch protection LSZHDOO1.

Detail: A = Contact erosion indication for vacuum interrupter contacts

- LSD Contactors and Vacuum Contactors, 3-pole, Size 6 / 10 / 12 / 14

Dimensions: LSDH8 Vacuum Contactors, Size 14

1) With box terminals for laminated copper bars (on request). Terminal cover for touch protection LSZHDOO1.

Detail: $\mathrm{A}=$ Contact erosion indication for vacuum interrupter contacts
Circuit Diagrams

LSD6, LSDE, LSDG
(1)

LSDH6, LSDH8

Terminal designations according to EN 50012.

1) $2 \mathrm{NO}+2 \mathrm{NC}$, with front mounted 4-pole LSZOD 122 auxiliary contact block or with lateral 2-pole LSZOD711 auxiliary contact block
2) $4 N O+4 N C$

Connection Diagrams

[^7]Electromechanical Contactors Series ALEA LS

LSD Contactors and Vacuum Contactors, 3-pole, Size 6 / 10 / 12 / 14

DESCRIPTION	TYPE NO. AVAILABLE	ORDER NO.	
Size 6- type LSD6-185A			
Contactor 55KW, 220-240VUC, with 2NO + 2NC, size 6 (with terminal box)	LSD6	LSD6	LSD6
Contactor 75KW, 220-240VUC, with 2NO + 2NC, size 6	LSD6115F		
Contactor 90KW, 220-240VUC, with 2NO + 2NC, size 6	LSD6155F		

Size 10 - type LSDE - 300A

Contactor $110 \mathrm{KW}, \mathrm{AC}-3,220-240 \mathrm{VUC}$, with $2 \mathrm{NO}+2 \mathrm{NC}, 50 \mathrm{~Hz}$, size 10	LSDE		LSDE225F
Contactor $132 \mathrm{KW}, \mathrm{AC}-3,220-240 \mathrm{VUC}$, with $2 \mathrm{NO}+2 \mathrm{NC}, 50 \mathrm{~Hz}$, size 10	LSDE	- -60	LSDE265F
Contactor $160 \mathrm{KW}, \mathrm{AC}-3,220-240 \mathrm{VUC}$, with $2 \mathrm{NO}+2 \mathrm{NC}, 50 \mathrm{~Hz}$, size 10	LSDE	- $-\times 0$	LSDE305F

Size 12 - type LSDG - 500A

Contactor 200KW, AC-3, 220-240VUC, with $2 \mathrm{NO}+2 \mathrm{NC}, 50 \mathrm{~Hz}$, size 12	LSDG		LSDG415F
Contactor 250KW, AC-3, 220-240VUC, with $2 \mathrm{NO}+2 \mathrm{NC}, 50 \mathrm{~Hz}$, size 12	LSDG	- - \% - -	LSDG515F
Size 14 - type LSDH - 820A			
Contactor $335 \mathrm{KW}, \mathrm{AC}-3,220-240 \mathrm{VAC}$, with $4 \mathrm{NO}+4 \mathrm{NC}, 50 \mathrm{~Hz}$, size 14	LSDH	- +00000	LSDH63G3
Contactor 600KW, AC-3, 220-240VAC, with $4 \mathrm{NO}+4 \mathrm{NC}, 50 \mathrm{~Hz}$, size 14	LSDH		LSDH64G3
Contactor 450KW, AC-3, 220-240VAC, with $4 \mathrm{NO}+4 \mathrm{NC}, 50 \mathrm{~Hz}$, size 14	LSDH	- $+0 \times 0$	LSDH82G3
Contactor 800KW, AC-3, 220-240VAC, with $4 \mathrm{NO}+4 \mathrm{NC}, 50 \mathrm{~Hz}$, size 14	LSDH		LSDH83G3

Auxiliary contacts

Auxiliary contact block for size 0-12, 1NC	LSZO	-000-9,	LSZOD001
Auxiliary contact block for size 0-12, 1 NO	LSZO	- -8000	LSZOD010
Auxiliary contact block for size 0-12, 1NC, delayed	LSZO		LSZ0D901
Auxiliary contact block for size 0-12, 1NO, delayed	LSZO		LSZ0D910
Auxiliary contact block for size 0-12,1NO + 3NC	LSZO	-60-9,	LSZOD113
Auxiliary contact block for size 0-12, 2NO + 2NC, DIN EN 50012	LSZO		LSZOD122
Auxiliary contact block for size 0-12, 2NO + 2NC, DIN EN 50005	LSZO	-000-9,	LSZOD 122F
Auxiliary contact block for size 0-12,3NO + 1NC, DIN EN 50012	LSZO	$+\infty=0$	LSZOD131
Auxiliary contact block for size 0-12, 3NO + 1NC, DIN EN 50005	LSZO	- -1000	LSZOD131F
Auxiliary contact block for size 0-12, 4NO, DIN EN 50005	LSZO	$+000-\infty$	LSZOD140F
Auxiliary contact block for size $0-12,1 \mathrm{NO}+1 \mathrm{NC}$, 1. position	LSZO	$+\infty=\infty$	LSZ0D711
Auxiliary contact block for size 3-12,1NO + 1NC, 2. position	LSZ3	$+\infty=0$	LSZ3D811

■LSU Contactors with 2 NO and 2 NC, 4-pole, Size $00 / 0 / 2$

LSUD 12C3

Schrack-Info

- 4-pole Contactors with 2 NO and 2 NC (switch over contactors)
- Contactors LSUD can be fitted in maximum with 4 auxiliary contacts (one 1-pole auxiliary contact LSZD05.. or one 4-pole LSZDH5..)
- Contactors LSUO and LSU2 can be fitted in maximum with 6 auxiliary contacts (four 1-pole auxiliary contacts LSZODO.., LSZOD9.. or one 4-pole LSZOD 1.., as well as one "side mounted" auxiliary contact LSZOD711) but in maximum 4 NC
- Fitting surge supressors for contactors LSUD - LSZD0001 up to LSZD0004
- Fitting surge supressors for contactors LSUO - LSZ00001, LSZ00002 or LSZ00003
- Fitting surge supressors for contactors LSU2 - LSZ00001, LSZ00002 or LSZ20001
- All auxiliary contacts are suitable for electronic circuits according EN 60947-5-4 (17VDC, 1mA)
- Coil and main contacts for contactors LSUD are not exchangeable
- Coil and main contacts for contactors LSUO and LSU2 are exchangeable - on request
- Electrical data of LSUD up to LSU2 are identical to according contactors LSD of size 00 up to size 2
- When using mechanical interlock for two contactors LSUO, the "right side mounted" (4th) pole of left contactor has to be changed to the left side of contactor
- Mountable to DIN-rail TS35 or mounting plate
- Further accessories find attached

		LSUD12	LSU025	LSU240
Rated insulation voltage $\mathrm{U}_{\mathbf{i}}$	(VAC)	690		
Utilization category AC-1 $\cos \varphi=1$				
Rated power at 230VAC	(kW)	7,5	13,3	22
Rated operational current $\mathrm{I}_{\mathrm{e}}=\mathrm{I}_{\mathrm{t}}$ at $40^{\circ} \mathrm{C}$ and 690 VAC	(A)	22	40	60
Utilization category AC-2 and AC-3				
Rated power at 230VAC	(kW)	3	5,5	11
Rated operational current $I_{\text {e }}$ at $380-440 \mathrm{VAC}$	(A)	11	22	40
Ambient temperature (operation)	$\left({ }^{\circ} \mathrm{C}\right)$	$-25 \ldots+60$		
Permissible mounting position				
Rules and regulations according		IEC 60947-4-1, EN60947-4-1		

Electromechanical Contactors Series ALEA LS

ISU Contactors with 2 NO and 2 NC, 4-pole, Size $00 / 0 / 2$
Dimensions

Lateral distance to grounded components $=6 \mathrm{~mm}$
2) Auxiliary contact block
4) Drilling pattern
3) Surge suppressor
5) Auxiliary contact block 1-pole

Dimensions

Lateral distance to grounded components $=6 \mathrm{~mm}$
$\mathrm{a}=3 \mathrm{~mm}$ at $<250 \mathrm{~V}$ and mounting of surge suppressor
$a=7 \mathrm{~mm}$ at $>250 \mathrm{~V}$ and mounting of surge suppressor
$b=D C 10 \mathrm{~mm}$ deeper than $A C$

* $4^{\text {th }}$ Pole can be changed to left side without tool

1) Auxiliary contact block, laterally mountable (left)
2) Auxiliary contact block, mountable on the front
3) Surge suppressor
4) Drilling pattern

LSU Contactors with 2 NO and 2 NC, 4-pole, Size $00 / 0 / 2$
Dimensions

Lateral distance to grounded components $=6 \mathrm{~mm}$
$\mathrm{a}=0 \mathrm{~mm}$ with varistor $<240 \mathrm{~V}$
$a=3.5 \mathrm{~mm}$ with varistor $>240 \mathrm{~V}$
$a=17 \mathrm{~mm}$ with $R C$ element and diode assembly
$b=$ Size 2: DC 15 mm deeper than $A C$

1) Auxiliary contact block, laterally mountable (right or left)
2) Auxiliary contact block, mountable on the front, (1 and 4 pole)
3) Surge suppressor
4) Drilling pattern

Circuit Diagrams

(1) LSUD

2) LSUO
$\xrightarrow[A 2(-)]{2}$
(3) LSU2
$\xrightarrow[A 2(-)]{2}$

Terminal designations according to EN 50005

1) LSUD contactors with $2 \mathrm{NO}+2 \mathrm{NC}$ main contacts

Auxiliary contacts blocks LSZDH5... and LSZD05.. can be snapped on
2) LSUO contactors with $\mathbf{2 N O}+2 \mathrm{NC}$ main contacts

Auxiliary contacts LSZODO.., LSZOD9... and auxiliary contacts blocks LSZOD 1..F can be snapped on 3) LSU2 contactors with $2 \mathrm{NO}+2 \mathrm{NC}$ main contacts

Auxiliary contacts LSZODO.., LSZOD9... and auxiliary contacts blocks LSZODI..F can be snapped on

Connection Diagrams

[^8]
Electromechanical Contactors Series ALEA LS

■LSU Contactors with 2 NO and 2 NC, 4-pole, Size $00 / 0 / 2$

DESCRIPTION	TYPE NO.	AVAILABLE	ORDER NO.
Size 00 - type LSUD - 12A			
$5.5 \mathrm{~kW} / 400 \mathrm{~V}, 2 \mathrm{NO}+2 \mathrm{NC}, 230 \mathrm{VAC}, 50 / 60 \mathrm{~Hz}$, size 00	LSUD	-000-9080	LSUD12C3
Size 0-type LSU0-25A			
$11 \mathrm{~kW} / 400 \mathrm{~V}, 2 \mathrm{NO}+2 \mathrm{NC}, 230 \mathrm{VAC}, 50 / 60 \mathrm{~Hz}$, size 0	LSU0	-000-6	LSU025C3
Size 2 - type LSU2-40A			
$18,5 \mathrm{~kW} / 400 \mathrm{~V}, 2 \mathrm{NO}+2 \mathrm{NC}, 230 \mathrm{VAC}, 50 / 60 \mathrm{~Hz}$, size 2	LSU2	-0000000	LSU240C3
Auxiliary contacts			
Auxiliary contact block for size 0-12, 2NO + 2NC, DIN EN 50012	LSZO		LSZOD 122
Auxiliary contact block for size 0-12, 2NO + 2NC, DIN EN 50005	LSZO		LSZOD122F
2NO+2NC size 00, DIN 50012	LSZD	-000-8,	LSZDD222
2NO+2NC size 00, DIN 50005	LSZD	$+500-6$	LSZDH522

■LSR Contactors 4-pole, for Switching Resistive Loads AC-1, Size 00 / 0 / 2 / 3

Schrack-Info

- 4-pole Contactors with 4 NO, from 22A up to 140 A AC-1 loads
- Contactors LSRD can be fitted in maximum with 4 auxiliary contacts (one 1-pole auxiliary contact LSZD05.. or one 4-pole LSZDH5..)
- Contactors LSRO and LSR2 can be fitted in maximum with 6 auxiliary contacts (four 1-pole auxiliary contacts LSZODO.., LSZOD9.. or one 4-pole LSZOD 1.. and one "side mounted" auxiliary contact LSZOD711) but in maximum 4 NC
- Contactors LSR3 can be fitted in maximum with 8 auxiliary contacts (four 1-pole auxiliary contacts LSZODO.. or LSZOD9.. or one 4-pole LSZOD 1.. and 2 "side mounted" auxiliary contacts LSZOD711 or LSZ3D811) but in maximum 4 NC
- Fitting surge supressors for contactors LSRD - LSZD0001 up to LSZD0004
- Fitting surge supressors for contactors LSRO - LSZ00001, LSZ00002 or LSZ00003
- Fitting surge supressors for contactors LSR2 and LSR3 - LSZ00001, LSZ00002 or LSZ20001
- All auxiliary contacts are suitable for electronic circuits according EN 60947-5-4 (17VDC, 1 mA)
- Coil and main contacts for contactors LSRD are not exchangeable
- Coil and main contacts for contactors LSRO up to LSR3 are exchangeable - on request
- Electrical data of LSRD up to LSR3 are identical to according contactors LSDD up to LSD3
- When using mechanical interlock for two contactors LSRO, the "right side mounted" (4th) pole of left contactor has to be changed to the left side of contactor
- Mountable to DIN-rail TS35 or mounting plate
- Further accessories find attached

Electromechanical Contactors Series ALEA LS

LSR Contactors 4-pole, for Switching Resistive Loads AC-1, Size 00 / 0 / 2 / 3
Dimensions

Lateral distance to grounded components $=6 \mathrm{~mm}$
2) Auxiliary contact block
3) Surge suppressor
4) Drilling pattern
5) Auxiliary contact block 1-pole

Dimensions

Lateral distance to grounded components $=6 \mathrm{~mm}$
$a=3 \mathrm{~mm}$ at $<250 \mathrm{~V}$ and mounting of surge suppressor
$a=7 \mathrm{~mm}$ at $>250 \mathrm{~V}$ and mounting of surge suppressor
$b=D C 10 \mathrm{~mm}$ deeper than AC

* $4^{\text {th }}$ Pole can be changed to left side without tool

1) Auxiliary contact block, laterally mountable (left)
2) Auxiliary contact block, mountable on the front
3) Surge suppressor
4) Drilling pattern

LSR Contactors 4-pole, for Switching Resistive Loads AC-1, Size 00 / 0 / 2 / 3
Dimensions

Lateral distance to grounded components $=6 \mathrm{~mm}$
$a=0 \mathrm{~mm}$ with varistor $<240 \mathrm{~V}$
$a=3.5 \mathrm{~mm}$ with varistor $>240 \mathrm{~V}$
$a=17 \mathrm{~mm}$ with $R C$ element and diode assembly
$b=$ Size 2: DC 15 mm deeper than $A C$

1) Auxiliary contact block, laterally mountable (right or left)
2) Auxiliary contact block, mountable on the front, (1-and 4-pole)
3) Surge suppressor
4) Drilling pattern
5) For mounting on TH 35 standard mounting rail according to EN 60715 (15mm deep) EN 60715
6) Allen screw 4 mm

Dimensions

Lateral distance to grounded components $=6 \mathrm{~mm}$
$\mathrm{a}=0 \mathrm{~mm}$ with varistor $<240 \mathrm{~V}$
$a=3.5 \mathrm{~mm}$ with varistor $>240 \mathrm{~V}$
$a=17 \mathrm{~mm}$ with RC element and diode assembly
$b=$ Size 3: DC 13 mm deeper than $A C$

1) Auxiliary contact block, laterally mountable (right or left)
2) Auxiliary contact block, mountable on the front, (1-and 4-pole)
3) Surge suppressor
4) Drilling pattern
5) For mounting on TH 35 standard mounting rail according to EN 60715 (15 mm deep)
or for size 3 also to TH 75 standard mounting rail according to EN 60715
6) Allen screw 4 mm

Electromechanical Contactors Series ALEA LS

■LSR Contactors 4-pole, for Switching Resistive Loads AC-1, Size 00 / 0 / 2 / 3

- Circuit Diagrams
(1) LSRD, LSR2, LSR3

(2) LSRO
$\xrightarrow{\sim}$

Terminal designations according to EN 50005

1) 4NO, LSZDH5.. And LSZD05.. auxiliary contact blocks can be snapped on
2) 4 NO, LSZODO.., LSZOD9.. auxiliary contact and LSZOD I..F auxiliary contact blocks can be snapped on

- Connection Diagrams

LSRD	LSR0, LSR2, LSR3
1 3 5 7 $A 1$ \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc 2 4 6 8 $A 2$	

Terminal designations according to EN 50005

DESCRIPTION	TYPE NO.	AVAILABLE	ORDER NO.
Size 00-type LSRD - 12A			
Contactor 18A ACl, $24 \mathrm{VAC}, 50 \mathrm{~Hz}$, size 00	LSRD		LSRD 1840
Contactor 18A ACl, 24VDC, size 00	LSRD		LSRD 1845
Contactor 18A ACl, 230VAC, $50 / 60 \mathrm{~Hz}$, size 00	LSRD	-	LSRD1843
Contactor 22A ACl, $24 \mathrm{VAC}, 50 \mathrm{~Hz}$, size 00	LSRD		LSRD2240
Contactor 22A ACl, 24VDC, size 00	LSRD	-000-0	LSRD2245
Contactor 22A ACl, 230VAC, $50 / 60 \mathrm{~Hz}$, size 00	LSRD	$\begin{array}{\|ccc} \hline-00 & -\pi \\ \hline \end{array}$	LSRD2243
Auxiliary contacts for LSRD contactors			
1NC size 00, DIN 50005, wiring from bottom	LSZD		LSZD0501
1 NO size 00, DIN 50005, wiring from bottom	LSZD		LSZD0510
4NO size 00, DIN 50005	LSZD		LSZDH540
3NO+1NC size 00, DIN 50005	LSZD		LSZDH531
2NO+2NC size 00, DIN 50005	LSZD	$+\infty$	LSZDH522
Size 0 - type LSRO-40A			
Contactor 35A ACl, 24VAC, 50 Hz , size 0	LSRO		LSR03540
Contactor 35A ACl, 24VDC, size 0	LSRO		LSR03545
Contactor 35A ACl, 230VAC, $50 / 60 \mathrm{~Hz}$, size 0	LSRO	0×0	LSR03543
Contactor 40A ACl, 24VAC, 50 Hz , size 0	LSRO		LSR04040
Contactor 30A ACl, 24VDC, size 0	LSRO		LSR04045
Contactor 40A ACl, 230VAC, $50 / 60 \mathrm{~Hz}$, size 0	LSRO		LSR04043
Auxiliary contacts for LSRO contactors			
Auxiliary contact block for size 0-12, 3NO + 1NC, DIN EN 50012	LSZO		LSZOD131
Auxiliary contact block for size 0-12, 2NO + 2NC, DIN EN 50012	LSZO	$+\infty=-\infty$	LSZOD 122
Auxiliary contact block for size 0-12, $1 \mathrm{NO}+3 \mathrm{NC}$	LSZO		LSZOD113
Auxiliary contact block for size 0-12, 4NO, DIN EN 50005	LSZO	$\begin{array}{\|ccc} \hline-00 & -\infty \\ \hline \end{array}$	LSZOD140F
Auxiliary contact block for size 0-12, 3NO + 1NC, DIN EN 50005	LSZO	$+-\infty 0$	LSZOD131F
Auxiliary contact block for size 0-12, 2NO + 2NC, DIN EN 50005	LSZO	$+\infty 0$	LSZOD122F
Auxiliary contact block for size $0-12,1 \mathrm{NO}+1 \mathrm{NC}$, 1. position	LSZO		LSZ0D711

Stнраскиж

LSR Contactors 4-pole, for Switching Resistive Loads AC-1, Size $00 / 0$ / 2 / 3

DESCRIPTION	TYPE NO.	AVAILABLE	ORDER NO.
Auxiliary contacts for LSRO contactors			
Size 2 - type LSR2-60A			
Contactor 60A ACl, $24 \mathrm{VAC}, 50 \mathrm{~Hz}$, size 2	LSR2		LSR26040
Contactor 60A ACl, 230VAC, $50 / 60 \mathrm{~Hz}$, size 2	LSR2	- $0-0.0$	LSR26043
Contactor 60A ACl, 24VDC, size 2	LSR2		LSR26045
Auxiliary contacts for LSR2 contactors			
Auxiliary contact block for size 0-12, 1NO	LSZO	-000-0	LSZ0D010
Auxiliary contact block for size 0-12, 1NC	LSZO	- -0.0	LSZ0D001
Auxiliary contact block for size $0-12,1 \mathrm{NO}$, delayed	LSZO		LSZOD910
Auxiliary contact block for size 0-12, 1NC, delayed	LSZO		LSZ0D901
Auxiliary contact block for size $0-12,1 \mathrm{NO}+1 \mathrm{NC}$, 1. position	LSZO	-00-n	LSZ0D711
Auxiliary contact block for size 0-12, 3NO + 1NC, DIN EN 50012	LSZO		LSZOD131
Auxiliary contact block for size 0-12, 2NO + 2NC, DIN EN 50012	LSZO	- 0×0	LSZOD 122
Auxiliary contact block for size 0-12, 1 NO + 3NC	LSZO	-000-0,	LSZOD113
Auxiliary contact block for size 0-12, 4NO, DIN EN 50005	LSZO	-000-m	LSZOD 140F
Auxiliary contact block for size 0-12, 3NO + 1NC, DIN EN 50005	LSZO	-000-0.000	LSZ0D131F
Auxiliary contact block for size 0-12, 2NO + 2NC, DIN EN 50005	LSZO	$+\infty 0$	LSZOD 122F
Size 3 - type LSR3-140A			
Contactor 110A ACl, 24VAC, 50Hz, size 3	LSR3		LSR31140
Contactor 110A ACl, 230VAC, $50 / 60 \mathrm{~Hz}$, size 3	LSR3	-	LSR31143
Contactor 110A ACI, 24VDC, size 3	LSR3		LSR31145
Contactor 140A AC1, 230VAC, $50 / 60 \mathrm{~Hz}$, size 3	LSR3		LSR31443
Contactor 140A AC1, 24VDC, size 3	LSR3	- $-\infty$	LSR31445
Auxiliary contacts for LSR3 contactors			
Auxiliary contact block for size 0-12, 1NO	LSZO		LSZ0D010
Auxiliary contact block for size 0-12, 1NC	LSZO	-000-7	LSZ0D001
Auxiliary contact block for size $0-12,1 \mathrm{NO}$, delayed	LSZO		LSZOD910
Auxiliary contact block for size 0-12, 1NC, delayed	LSZO		LSZ0D901
Auxiliary contact block for size $0-12,1 \mathrm{NO}+1 \mathrm{NC}$, 1. position	LSZO	-600-0-6	LSZ0D711
Auxiliary contact block for size 0-12, 3NO + 1NC, DIN EN 50012	LSZO		LSZOD131
Auxiliary contact block for size 0-12, 2NO + 2NC, DIN EN 50012	LSZO	$+\infty=0$	LSZOD 122
Auxiliary contact block for size 0-12, 1 NO + 3NC	LSZO	$+0006$	LSZOD113
Auxiliary contact block for size 0-12, 4NO, DIN EN 50005	LSZO	$\begin{array}{rr} \hline-000 & -\infty \\ \hline \end{array}$	LSZOD 140F
Auxiliary contact block for size 0-12, 3NO + 1NC, DIN EN 50005	LSZO	$+000$	LSZ0D131F
Auxiliary contact block for size 0-12, 2NO + 2NC, DIN EN 50005	LSZO	$+\infty=\infty$	LSZOD 122F
Auxiliary contact block for size 3-12, 1NO + 1NC, 2. position	LSZ3	$\begin{array}{rrr} \hline-000 & 0-9 \end{array}$	LSZ3D811

Electromechanical Contactors Series ALEA LS

ILSK Capacitor Switching Contactors, Size 00 / 0 / 3

		LSKD17	LSK032	LSK362
Rated insulation voltage $\mathbf{U}_{\mathbf{i}}$	(VAC)	690		
Utilization category AC-6b				
Rated power at 400VAC	(kVAr)	5 ... 12,5	6... 25	5 ... 50
Rated operational current I_{e} at 50° and $380-400 \mathrm{VAC}$	(A)	8 ... 18	9... 36	8 ... 72
Ambient temperature (operation)	$\left({ }^{\circ} \mathrm{C}\right)$	-25 ... +60		
Permissible mounting position				
Rules and regulations according		IEC 60947-4-1, EN60947-4-1		

Dimensions

LSK Capacitor Switching Contactors, Size 00 / 0 / 3
Dimensions

1) Drilling pattern

Dimensions

LSK3

1) Drilling pattern

Circuit Diagrams

LSKD	LSK0, LSK3

Electromechanical Contactors Series ALEA LS

ISK Capacitor Switching Contactors, Size 00 / 0 / 3
Circuit Diagrams

1) Size 00
2) Sizes 0 and 3

Connection Diagrams

DESCRIPTION	TYPE NO.	AVAILABLE	ORDER NO.
Size 00-12.5kVAr			
Capacitor switching Contactors 12.5 kVar, 220-240VAC, 1NO/1NC	LSKD		LSKD17B3
Size 0-25kVAr			
Capacitor switching Contactors $25 \mathrm{kVar}, 220-240 \mathrm{VAC}, 1 \mathrm{~N} / \mathrm{O}$	LSKO	[-000-9,	LSK03213
Size 3-50kVAr			
Capacitor switching Contactors $50.0 \mathrm{kVar}, 220-240 \mathrm{VAC}, 1 \mathrm{NO}$	LSK3	-000-9,	LSK36213
Auxiliary contacts			
Auxiliary contact block for size 0-12,1NO + 1NC, 1. position	LSZO	-000-60	LSZ0D711

- LSHD Auxiliary Contactors 4-pole, Size 00

Schrack-Info

- 4-pole Auxiliary contactors for control functions
- Auxiliary contactors LSHD can be extended with additional auxiliary contacts to 8-pole (one 4-pole LSZDH5..) but in maximum 4 NC
- Auxiliary contactors LSHD...N and LSHD...G with reduced power consumption of coil - 3,2W - and coil voltage of 17-30VDC are specially designed for control by PLC
- Auxiliary contactors LSHD...N and LSHD...G can not be extended with additional auxiliary contacts
- Contacts are suitable for electronic circuits according EN 60947-5-4 (17VDC, 1 mA)
- Coil and main contacts for contactors LSHD are not exchangeable
- 4-pole auxiliary contactors LSHD can be retrofitted with a soldering adaptor LSZDD002 for mounting to printed boards
- Mountable to DIN-rail TS35 or mounting plate
- Further accessories find attached

		LSHD
Rated insulation voltage $\mathbf{U}_{\mathbf{i}}$	(VAC)	690
Thermal rated current $\mathrm{l}_{\text {th }}$ at $40^{\circ} \mathrm{C}$ and 400VAC	(A)	10
Utilization category AC-15		
Rated operational current I_{e} at $40^{\circ} \mathrm{C}$ and 230/400VAC	(A)	6/3
Utilization category DC13 1)		
Rated operational current I_{e} at $40^{\circ} \mathrm{C}$ up to $60 / 110 / 220 \mathrm{VDC}$	(A)	2/1/0,3
Ambient temperature (operation)	$\left({ }^{\circ} \mathrm{C}\right)$	-25 ... +60
Permissible mounting position		
Rules and regulations according		IEC 60947-5-1, EN 60947-5-1

1) Auxiliary contacts suitable for electronic circuits, according EN60947-5-4 for rated voltage 24VDC (Test ratings 17VDC, 1 mA). Positively guided contacts.

Dimensions

[^9]
Electromechanical Contactors Series ALEA LS

- LSHD Auxiliary Contactors 4-pole, Size 00

Dimensions
LSHD.. N, LSHD..G

[mm]

Lateral distance to grounded components $=6 \mathrm{~mm}$. All types: no further auxiliary contacts or contact blocks can be snapped on.
LSHD...N: surge suppressor can be inserted
LSHD...G: with built-in diode

1) Surge suppressor
2) Drilling pattern

Circuit Diagrams

LSHD067.	LSHD068.	LSHD069.

Terminal designations according to EN 50011. Surge suppression can be plugged in.
Fitting auxiliary contacts according to EN 50005 - LSZD05.. and LSZDH5.

Circuit Diagrams

LSHD067N	LSHD068N	LSHD069N

Terminal designations according to EN 50011 (no auxiliary contacts can be snapped on), surge suppressor can be plugged in.
Circuit Diagrams

LSHD067G	LSHD068G	LSHD069G

Terminal designations according to EN 50011 (no auxiliary contacts can be snapped on), diode integrated.

Connection Diagrams

LSHD067.					LSHD068.					LSHD069.				
${ }^{13}$		33			$\stackrel{13}{\bigcirc}$	21	3			$\stackrel{13}{\bigcirc}$	$\stackrel{21}{\bigcirc}$			$\stackrel{\text { A1 }}{\bigcirc}$
\bigcirc			\bigcirc	\bigcirc										
14	24	34	44	A2	14	22	34	44	A2	14	22	32	44	A2

LSHD Auxiliary Contactors 4-pole, Size 00

DESCRIPTION	TYPE NO.	AVAILABLE	ORDER NO.
Size 00 - type LSHD			
6 A 4 NO AC24V, 50/60Hz	LSHD	[-80-980	LSHD0670
6A 4NO DC24V	LSHD	$+700-\pi$	LSHD0675
6 A 4 NO AC230V, $50 / 60 \mathrm{~Hz}$	LSHD	[-0000]	LSHD0673
$6 \mathrm{~A} 3 \mathrm{NO}+1 \mathrm{NC} \mathrm{AC24V}, \mathrm{50/60Hz}$	LSHD	- $\times 10$	LSHD0680
$6 \mathrm{~A} 3 \mathrm{NO}+1 \mathrm{NC} \mathrm{DC24V}$	LSHD	[000-6,	LSHD0685
$6 \mathrm{~A} 3 \mathrm{NO}+1 \mathrm{NC} \mathrm{AC230V} ,50 / 60 \mathrm{~Hz}$	LSHD	- -6000	LSHD0683
6A 2NO+2NC AC24V, 50/60Hz	LSHD	- $-\cdots \times 0$	LSHD0690
$6 \mathrm{~A} 2 \mathrm{NO}+2 \mathrm{NC} \mathrm{DC24V}$	LSHD	- -5000	LSHD0695
6A 2NO+2NC AC230V, $50 / 60 \mathrm{~Hz}$	LSHD	-000-9,	LSHD0693
Auxiliary contacts for LSHD contactors			
1 NC size 00, DIN 50005, wiring from bottom	LSZD	[-7000]	LSZD0501
1 NO size 00, DIN 50005, wiring from bottom	LSZD	$\begin{array}{\|ccc} \hline-\infty 0 & -\pi \\ \hline \end{array}$	LSZD0510
4NO size 00, DIN 50005	LSZD	[-000]	LSZDH540
3NO+1NC size 00, DIN 50005	LSZD	- -6000	LSZDH531
2NO+2NC size 00, DIN 50005	LSZD	-000 0 -	LSZDH522
Size 00 - type LSHD for PLC			
6A 4NO DC17-30V, for PLC	LSHDN		LSHD067N
6A 4NO DC17-30V, for PLC, with diode	LSHDG		LSHD067G
$6 \mathrm{~A} 3 \mathrm{NO}+1 \mathrm{NC} \mathrm{DC17-30V}$,	LSHDN		LSHD068N
6A 2NO+2NC DC 17-30V, for PLC	LSHDN		LSHD069N
6A 2NO+2NC DC 17-30V, for PLC, with diode	LSHDG		LSHD069G

Electromechanical Contactors Series ALEA LS

Frontmounted Auxiliary Contacts for Contactors Size 00, LSDD with one included NO

Schrack-Info

- 1- and 4-pole Auxiliary Contacts for Contactors LSDD with one included NO
- Contact designation according to DIN 50005 or DIN 50012
- All auxiliary contacts are suitable for electronic circuits according EN 60947-5-4 (17VDC, 1 mA)

		Auxiliary contacts LSZD05, LSZDD, LSZDH, LSZOD
Rated insulation voltage $\mathbf{U}_{\mathbf{i}}$	(VAC)	690
Thermal rated current l_{t+} at $40^{\circ} \mathrm{C}$ and 690VAC	(A)	10
Utilization category AC-15		
Rated operational current I_{e} at $40^{\circ} \mathrm{C}$ and 230/400VAC	(A)	6/3
Utilization category DC13)		
Rated operational current I_{e} at $40^{\circ} \mathrm{C}$ up to 60/110/220VDC	(A)	2/1/0,3
Ambient temperature (operation)	$\left({ }^{\circ} \mathrm{C}\right)$	$-25 \ldots+60$
Rules and regulations according		IEC 60947-5-1, EN 60947-5-1

1) Auxiliary contacts suitable for electronic circuits, according EN60947-5-4 for rated voltage 24VDC (Test ratings 17VDC, 1mA). Positively guided contacts.

Dimensions

1) according to EN 50005 , Screw terminals, cable entry from below, 1-pole
2) according to EN 50012, Screw terminals, 1- to 4-pole

Frontmounted Auxiliary Contacts for Contactors Size 00, LSDD with one included NO

- Circuit Diagrams

LSZD0510	LSZD0501	LSZDD201	LSZDD212	LSZDD213	LSZDD222
	$\left.\right\|_{52} ^{51}$	$\left.\right\|_{22} ^{21}$			

Connection Diagrams

LSZD0510	LSZD0501	LSZDD201	LSZDD212	LSZDD213	LSZDD222
		21	0213143	$\begin{array}{llll} 21 & 31 & 41 \\ 0 & 0 & 0^{33} & 0 \end{array}$	$00_{0}^{21} 0 O_{0}^{31} O_{0}^{43} 0$
(0) 53 54	1 0 51 51	\bigcirc	O20	$\mathrm{ccccc}^{\bigcirc}$	[rrrr

DESCRIPTION	TYPE NO.	AVAILABLE	ORDER NO.
1 NO size 00, DIN 50005, wiring from bottom	LSZD		LSZD0510
1 NC size 00, DIN 50005, wiring from bottom	LSZD	-000-9,	LSZD0501
1NC size 00, DIN 50012	LSZD	-700-6,	LSZDD201
1NO+2NC size 00, DIN 50012	LSZD	- -0×0	LSZDD212
1NO+3NC size 00, DIN 50012	LSZD	$\begin{array}{\|ccc} \hline-000 & 0 \\ \hline \end{array}$	LSZDD213
2NO+2NC size 00, DIN 50012	LSZD	-000-0,	LSZDD222

Electromechanical Contactors Series ALEA LS

Frontmounted Auxiliary Contacts for Contactors Size 00, LSDD with one included NC, also for LSRD, LSUD and Auxiliary Contactors LSHD

LSZDH522

- Schrack-Info
- 1- and 4-pole Auxiliary Contacts for Contactors LSDD with one included NC, for contactors LSRD, LSUD and auxiliary contactors LSHD
- Contact designation according to DIN 50005
- All auxiliary contacts are suitable for electronic circuits according EN 60947-5-4 (17VDC, 1 mA)

		Auxiliary contacts LSZD05, LSZDD, LSZDH, LSZOD
Rated insulation voltage $\mathbf{U}_{\mathbf{i}}$	(VAC)	690
Thermal rated current $I_{\text {th }}$ at $40^{\circ} \mathrm{C}$ and 690VAC	(A)	10
Utilization category AC-15		
Rated operational current I_{e} at $40^{\circ} \mathrm{C}$ and $230 / 400 V A C$	(A)	6/3
Utilization category DC13 ${ }^{1 /}$		
Rated operational current I_{e} at $40^{\circ} \mathrm{C}$ up to 60/110/220VDC	(A)	2/1/0,3
Ambient temperature (operation)	$\left({ }^{\circ} \mathrm{C}\right)$	$-25 \ldots+60$
Rules and regulations according		IEC 60947-5-1, EN 60947-5-1

1) Auxiliary contacts suitable for electronic circuits, according EN60947-5-4 for rated voltage 24VDC (Test ratings 17VDC, 1 mA). Positively guided contacts.

Dimensions

LSZD05.. 1

LSZDH5..

[^10]Frontmounted Auxiliary Contacts for Contactors Size 00, LSDD with one included NC, also for LSRD, LSUD and Auxiliary Contactors LSHD

- Circuit Diagrams

Connection Diagrams

LSZD0510	LSZD0501	LSZDH540	LSZDH531	LSZDH522
0 03 0 54	[53 63 73 83 0 0 0 0 0 0 54 64 74 84	53 61 73 83 0 0 0 0 0 54 62 0 0 54 62 74 84	53 61 71 83 0 0 0 0 0 0 0 0 0 54 62 72 84

DESCRIPTION	TYPE NO.	AVAILABLE	ORDER NO.
1NO size 00, DIN 50005, wiring from bottom	LSZD	LSZD	LSZD
1NC size 00, DIN 50005, wiring from bottom	LSZD	LSZD0510	
4NO size 00, DIN 50005	LSZD	LSZD0501	
3NO+1NC size 00, DIN 50005			
2NO+2NC size 00, DIN 50005			

Electromechanical Contactors Series ALEA LS

- Parallel Connectors (Star Jumper) and Feed Terminals, Size 00

LSZDD003

Schrack-Info

- 3-pole parallel connectors (star jumpers) size 00 can be shortened by one pole to 2-pole connectors
- 3- or 4-pole parallel connectors (star jumpers) size 00 with feed terminal have a maximum cross section of $25 \mathrm{~mm}^{2}$
- 3-pole feed terminal size 00 with 3 terminals also are permittted as feed terminal for motor protection switches BESD up to a maximum cross section of $6 \mathrm{~mm}^{2}$

Dimensions

DESCRIPTION	TYPE NO.	AVAILABLE
Parallel connectors	ORDER NO.	
Parallel connector 4-pole for LSDD 1 terminal	LSZD	
Star jumper 3-pole for LSDD size 00	LSZD	LSZDDO004
Feed terminals	LSZD	LSZDY002
Feed terminal 3 phase for LSDD $6 \mathrm{~mm}^{2}, 3$ terminals		LSZDD001

- Wiring Sets, Mechanical Interlock and Connection Clips, Size 00

Schrack-Info

- Wiring set LSZDW001 for reversing contactor combinations includes besides necessary bridges for mains also the wiring for electrical interlock, the connection clips for both contactors and the integrated, mechanical interlocking link. Mechanical interlocking link does not increase width of reversing contactor assembly
- Wiring set LSZDY001 for Y-D contactor combinations includes - besides necessary bridges for mains, the star jumper - the wiring for electrical interlock (between Y - and Delta-contactor) and the clips for connection of all contactors and the integrated, mechanical interlocking link between Y-and Deltacontactor. Mechanical interlocking link does not increase width of Y-D contactor assembly (total width of combination = summary of all single contactor widths + width of Y-D timer). Y-D timer has to be ordered seperately
- Contactor assemblies LSYD and LSWD are suitable for thermal overload relais of type LSTD
- Value of current for overload relais at Y-D combinations = rated current of motor $\ln \times 0.58$

Circuit Diagram - Reversing Assemblies

Main circuit, Size 00:

1) The LSZDWOO1 wiring set contains, among other things, wiring connectors for connecting the main circuit.

Control circuit, Size 00:

The terminal designations for the contactors comply with EN 50012. The LSZDWOO1 wiring set contains, among other things, the electrical interlock.
2) For momentary-contact operation
3) For maintained-contact operation

SO Button "OFF"
S1 Button "Clockwise ON"
S2 Button "Counter clockwise ON"
S Button "CW-OFF-CCW"
K1 Clockwise contactor

K2 Counter clockwise contactor
F1 Fuses for main circuit
F3 Fuses for control circuit
F2 Thermal overload relays

Electromechanical Contactors Series ALEA LS

7 Wiring Sets, Mechanical Interlock and Connection Clips, Size 00

Circuit Diagram - Y-D Assemblies

(1)

(2)

(3)

Main circuit:

1) The LSZDW001 wiring set contains, among other things, wiring connectors for connecting the main circuit.

Control circuit:

with LSZD0101 Y-Delta timer, laterally mounted (example circuits). The contact element K4:17/18 is only closed in the wye stage; the contact element is open in the delta stage as well as in the de-energized state. $\mathrm{S} 1(\mathrm{~S})$ is connected to clamping point $\mathrm{K} 1: 33$.
2) For momentary-contact operation
3) For maintained-contact operation, * Clamping point K1:44 remains unwired in this version

SO Button "OFF" K3 Delta contactor		
S1 Button "ON" K4 Solid-state, time-delay auxiliary contact block or timing relay		
S Maintained-contact switch FO Fuses		
K1 Line contactor F1 Thermal overload relays		
K2 Star contactor		
DESCRIPTION	TYPE NO. AVAILABLE	ORDER NO.
Wiring Set for Reversing-Assemblies size 00, including mechanical interlock	LSZD $\square_{\text {- }}^{-\infty-\infty}$	LSZDW001
Mechanical connector for 2 contactors size 00	$\text { LSZD } \quad-\infty \div 0$	LSZDW002
Wiring Set for YD-Assemblies size 00, including mechanical Interlock	LSZD $\square^{-\infty}$	LSZDY001

Solder Pin Adapter, Size 00

Schrack-Info

LSZDD002

- Mouting of contactors LSDD, LSSD as well as 4-pole auxiliary ontactors LSHD to printed boards

DESCRIPTION	TYPE NO.	AVAILABLE
Solder pin adaptor for LS.D, size 00, 10-pole	ISZD	

Star-Delta Timers

Connection Link for Motor Protection Switches and Contactors, Size 00 (0)

Schrack-Info

- Connection link LSZDD005 for connection of motor protection switch BESD size 00 with AC or DC operated contactor LSDD or LSSD
- Connection link LSZDD006 for connection of motor protection switch BESO size 0 with AC or DC operated contactor LSDD or LSSD

DESCRIPTION	TYPE NO.	AVAILABLE	ORDER NO.
Connector for LSDD (AC or DC operated) and BESD, electrical and mechanical	LSZD	LSZD	LSZD
Connector for LSDD (AC or DC operated) and BESO, electrical and mechanical	LSZDDO		

Surge Supressors (plug in), Size 00

- Schrack-Info
- Surge supressors for frontside mounting to all contactors of size 00
- Surge supressors do not only protect the coil of the contactor, they also preseve the driving contacts of control
- LSZD0001 and LSZD002 designed as varistor, for AC and DC
- LSZD0003 designed as RC-combination, for AC and DC
- LSZD0004 designed as diode-assembly, only for DC

DESCRIPTION	TYPE NO.	AVAILABLE	ORDER NO.
Varistor AC24-48V, DC24-70V size 00, plug-in type	LSZD	LSZD	LSZD0001
Varistor AC127-240V, DC150-250V size 00, plug-in type	LSZD	LSZD	LSZD0002
Suppressor AC 127-240V, DC150-250V size 00, plug-in type	LSZD		
Suppressor diode DC12-250V size 00, plug-in type			

Electromechanical Contactors Series ALEA LS

Frontmounted Auxiliary Contacts, 1-pole, Size 0-12

- Schrack-Info
- 1-pole auxiliary contacts for frontside mounting, according to DIN EN 50005 bzw. 50012
- Available as NO, NC, early make NO or delayed NC
- For contactors LS., size 0 up to 12
- Complete terminal designation of the auxiliary contacts results out of the combination of mounting place at contactor (auxiliary contact - column) and the printed terminal number at the auxiliary contact
- As possible, a symmetrical arrangement of NO and NC contacts has to be considered.
- Auxiliary contacts are suitable for electronic circuits according IEC 60947-5-4 (17VDC, 1 mA) and are positively driven

		Auxiliary contacts LSZD05, LSZDD, LSZDH, LSZOD
Rated insulation voltage $\mathbf{U}_{\mathbf{i}}$	(VAC)	690
Thermal rated current l_{1+} at $40^{\circ} \mathrm{C}$ and 690VAC	(A)	10
Utilization category AC-15		
Rated operational current I_{e} at $40^{\circ} \mathrm{C}$ and 230/400VAC	(A)	6/3
Utilization category DC13 ${ }^{1 /}$		
Rated operational current I_{e} at $40^{\circ} \mathrm{C}$ up to $60 / 110 / 220 \mathrm{VDC}$	(A)	2/1/0,3
Ambient temperature (operation)	$\left({ }^{\circ} \mathrm{C}\right)$	$-25 . . .60$
Rules and regulations according		IEC 60947-5-1, EN 60947-5-1

Dimensions

Circuit Diagrams

D010	D001	D901	D910
\| 1	1.3	15	1.7
-7	$-1_{4}^{1}-$	7	$-\int_{8}^{1}$

DESCRIPTION	TYPE NO.	AVAILABLE	ORDER NO.
Auxiliary contact block for size $0-12,1 \mathrm{NC}$	LSZO	LSZO	LSZOD001
Auxiliary contact block for size $0-12,1 \mathrm{NO}$	LSZO	LSZOD010	
Auxiliary contact block for size $0-12,1 \mathrm{NC}$, delayed	LSZO	LSZOD901	
Auxiliary contact block for size $0-12,1 \mathrm{NO}$, delayed		LSZOD910	

Frontmounted Auxiliary Contacts, 4-pole, Size 0-12
Schrack-Info

- 4-pole auxiliary contacts for frontside mounting, according to DIN EN 50005 or 50012
- Available with 4 contacts in several combinations of NO and NC
- For contactors LS., size 0 up to 12
- Auxiliary contacts are suitable for electronic circuits according IEC 60947-5-4 (17VDC, 1 mA) and are positively driven

		Auxiliary contacts LSZD05, LSZDD, LSZDH, LSZOD
Rated insulation voltage $\mathbf{U}_{\mathbf{i}}$	(VAC)	690
Thermal rated current l_{t} at $40^{\circ} \mathrm{C}$ and 690VAC	(A)	10
Utilization category AC-15		
Rated operational current I_{e} at $40^{\circ} \mathrm{C}$ and 230/400VAC	(A)	6/3
Utilization category DC13 ${ }^{1 /}$		
Rated operational current I_{e} at $40^{\circ} \mathrm{C}$ up to $60 / 110 / 220 \mathrm{VDC}$	(A)	2/1/0,3
Ambient temperature (operation)	$\left({ }^{\circ} \mathrm{C}\right)$	-25 ... +60
Rules and regulations according		IEC 60947-5-1, EN 60947-5-1

1) Auxiliary contacts suitable for electronic circuits, according EN60947-5-4 for rated voltage 24VDC (Test ratings 17VDC, 1 mA). Positively guided contacts.

Dimensions

According to EN 50012 and *EN 50005 (LSZOD I..F), Screw terminals, 4-pole
Circuit Diagrams

Electromechanical Contactors Series ALEA LS

Frontmounted Auxiliary Contacts, 4-pole, Size 0-12

- Connection Diagrams

LSZ0D131	LSZ0D122	LSZ0D113
$\bigcirc \bigcirc^{13} \bigcirc_{\bigcirc}^{21} \bigcirc^{33} \bigcirc^{43}$	$\begin{array}{llll}13 & 21 & 31 & 41 \\ \bigcirc & \bigcirc & \bigcirc & \bigcirc\end{array}$	13 21 31 41 \bigcirc \bigcirc \bigcirc \bigcirc
$\begin{array}{llll} \bigcirc & \bigcirc & \bigcirc & \bigcirc \\ 14 & 22 & 34 & 44 \\ \hline \end{array}$	\bigcirc \bigcirc \bigcirc \bigcirc 14 22 32 44	
LSZ0D140F	LSZ0D131F	LSZ0D122F
13 23 33 43 \bigcirc \bigcirc \bigcirc \bigcirc 14 \bigcirc \bigcirc \bigcirc 14 34 44	13 23 33 41 \bigcirc \bigcirc \bigcirc \bigcirc 14 \bigcirc \bigcirc \bigcirc 14 34	13 23 31 41 \bigcirc \bigcirc \bigcirc \bigcirc 14 \bigcirc \bigcirc \bigcirc 1 32 42

DESCRIPTION	TYPE NO.	AVAILABLE	ORDER NO.
Auxiliary contact block for size 0-12, 3NO + 1NC, DIN EN 50012	LSZO	- $+0 \times 0$	LSZOD 131
Auxiliary contact block for size 0-12, 2NO + 2NC, DIN EN 50012	LSZO	-000-9,	LSZOD122
Auxiliary contact block for size 0-12, 1 NO + 3NC	LSZO	-000-6	LSZOD113
Auxiliary contact block for size 0-12, 4NO, DIN EN 50005	LSZO	- -000	LSZOD140F
Auxiliary contact block for size 0-12, 3NO + 1NC, DIN EN 50005	LSZO	[-00-9,	LSZOD131F
Auxiliary contact block for size 0-12, 2NO + 2NC, DIN EN 50005	LSZO	-000-0,	LSZOD 122F

Sidemounted Auxiliary Contacts, 2-pole, Size 0-12

- Schrack-Info
- 2-pole auxiliary contacts for side mounting, according to DIN EN 50012
- Available as $1 \mathrm{NO}+1 \mathrm{NC}$
- For contactors LS., size 0 up to 12 as "first" side mounted (LSZOD711) respectively as "second" side mounted at size 3 up to 12 (LSZ3D811)
- Correct terminal designation of the auxiliary contacts depends on the mounting-side at contactor (left or right side)
- "Second" side mounted auxiliary contact at contactor - LSZ3D811, can be snapped onto "first" auxilliary contact LSZOD711 (maximum number of retrofittable auxiliary contacts has to be respected)
- As possible, a symmetrical arrangement of $N O$ and $N C$ contacts has to be considered.
- Auxiliary contacts are suitable for electronic circuits according IEC 60947-5-4 (17VDC, 1 mA) and are positively driven

		Auxiliary contacts LSZD05, LSZDD, LSZDH, LSZOD
Rated insulation voltage $\mathbf{U}_{\mathbf{i}}$	(VAC)	690
Thermal rated current $\mathrm{l}_{\text {tr }}$ at $40^{\circ} \mathrm{C}$ and 690VAC	(A)	10
Utilization category AC-15		
Rated operational current l_{e} at $40^{\circ} \mathrm{C}$ and 230/400VAC	(A)	6/3
Utilization category DC13 ${ }^{1 /}$		
Rated operational current I_{e} at $40^{\circ} \mathrm{C}$ up to $60 / 110 / 220 \mathrm{VDC}$	(A)	2/1/0,3
Ambient temperature (operation)	$\left({ }^{\circ} \mathrm{C}\right)$	$-25 \ldots+60$
Rules and regulations according		IEC 60947-5-1, EN 60947-5-1

1) Auxiliary contacts suitable for electronic circuits, according EN60947-5-4 for rated voltage 24VDC (Test ratings 17VDC, 1mA). Positively guided contacts.

Dimensions

Auxiliary contact block, Size 0-12 (LSZOD711) / 3-12 (LSZOD811)
according to EN 50012, laterally mountable,
Screw terminals, 2-pole

Electromechanical Contactors Series ALEA LS

Sidemounted Auxiliary Contacts, 2-pole, Size 0-12
C Circuit Diagrams
LSZOD711

Terminal designations according to EN 50012

1) mounted left
2) mounted right

- Connection Diagrams

LSZ0D711		LSZ3D811	
$21 \bigcirc 2 \varepsilon$	$31 \bigcirc 2 z$	$61 \bigcirc \mathrm{zL}$	$71 \bigcirc 29$
$13 \bigcirc \downarrow$	$43 \bigcirc \mathrm{ml}$	$53 \bigcirc 18$	$83 \bigcirc \mathrm{ts}$
$14 \bigcirc 8 \downarrow$	$44 \bigcirc \varepsilon\llcorner$	$54 \bigcirc \varepsilon 8$	$84 \bigcirc \varepsilon \varsigma$
$22 \bigcirc 1 \varepsilon$	$32 \bigcirc 12$	$62 \bigcirc \ldots$	$72 \bigcirc 19$
(1)	(2)	(1)	(2)

1) mounted left
2) mounted right

DESCRIPTION	TYPE NO.	AVAILABLE	ORDER NO.
Auxiliary contact block for size 0-12, 1NO + 1NC, 1. position	LSZO	- -800	LSZ0D711
Auxiliary contact block for size 3-12,1NO + 1NC, 2. position	LSZ3	-000-0,	LSZ3D811

- Connection Links for Motor Protection Switches and Contactors, Size 0-3

Schrack-Info

- Contactors with AC-coil have less hight than those with DC-coil, therefore different connection links are necessary
- Connection link LSZODOO2, for connection of Motor protection switch BESO with AC operated contactor LSDO or LSSO
- Connection link LSZODOO4, for connection of Motor protection switch BESO with DC operated contactor LSDO or LSSO
- Connection link LSZ2D004, for connection of Motor protection switch BES2 with AC operated contactor LSD2
- Connection link LSZ2D005, for connection of Motor protection switch BES2 with DC operated contactor LSD2
- Connection link LSZ3D004, for connection of Motor protection switch BES3 with AC operated contactor LSD3
- Connection link LSZ3D003, for connection of Motor protection switch BES3 with DC operated contactor LSD3

DESCRIPTION	TYPE NO.	AVAILABLE	ORDER NO.
for contactors size 0 (AC operated) and motor protection switch size 0	LSZO	-000-6	LSZOD002
for contactors size 0 (DC operated) and motor protection switch size 0	LSZO		LSZOD004
for contactors size 2 (AC operated) and motor protection switch size 2	LSZ2		LSZ2D004
for contactors size 2 (DC operated) and motor protection switch size 2	LSZ2		LSZ2D005
for contactors size 3 (AC operated) and motor protection switch size 3	LSZ3	-50-m	LSZ3D004
for contactors size 3 (DC operated) and motor protection switch size 3	LSZ3	$\begin{array}{rrr} \hline-000 & 0-8 \\ \hline \end{array}$	LSZ3D003

Electromechanical Contactors Series ALEA LS

Supressor Units, Size 0-12

- Schrack-Info
- At contactors of size 0 up to 3 , surge supressors can be snapped in at top- or bottom-side of contactor. At contactors of size 6 up to 12, only at the top
- When a surge supressor is used together with connection link and motor protection switch, the supressor generally should be snapped in at bottom-side of contactor (to enable easy exchange)
- When a surge supressor is used at a combination of contactor and thermal overload relais, the supressor generally should be snapped in at top-side of contactor (to enable easy exchange)
- The diode assemblies for contactors size 0 have a defined polarity (marked with "+" and "-") therefore they are of different design for top or bottom mounting
- Circuit Diagram

1) Diode assembly
2) Varistor
3) $R C$ element

DESCRIPTION	TYPE NO.	AVAILABLE	ORDER NO.
Diode-assembly DC24V top mounted, size 0	LSZD	- -8000	LSZD0005
Diode-assembly DC24V bottom mounted, size 0	LSZD		LSZD0006
Varistor for size 0, 24-48VAC, 24-70VDC	LSZO		LSZ00001
Varistor for size 0, 127-240VAC, 150-250VDC	LSZO		LSZ00002
Surge suppressor, RC for size 0, 127-240VAC, 150-250VDC	LSZO	$+\infty=-\infty$	LSZ00003
Surge suppressor, RC for size 2-3, 127-240VAC, 150-250VDC	LSZ2	- -000000	LSZ20001
Surge suppressor, RC for size 6, 127-240VAC, 150-250VDC	LSZ6		LSZ60001

Latching Block, Mechanical and Electrical, Size 0-2

■ Schrack-Info

- For frotside mounting ontos contactors of size 0 up to 2
- After contactor has switched on, the latching block catches the contactor in position "ON", also without control voltage. Release of latching block is realised by a short impuls of 24VAC or DC (terminal E1/E2)
- The Latching block additionally comes with one additional button for manual switching on and one reset-button for manual switching off
- Latching block occupies 2 of the 4 frontside plug-in slots of contactor and has to be assessed as a 2 NC at the summary number of maximum possible auxiliary contacts

Dimensions

DESCRIPTION	TYPE NO.	AVAILABLE	ORDER NO.
Mechanical latching block for s . $0-2$, remains "ON" if voltage fails	LSZO	$-\infty$	LSZOOI13

Electromechanical Contactors Series ALEA LS

Terminal Covers, Size 2-12

- Schrack-Info
- Additional terminal covers for contactors of size 2 and 3 with box terminals (Mouting onto box terminal)
- Short terminal covers (38 or 42 mm) for contactors of size 6 up to 14 (without box terminal) as a cover for the terminals of contactor assemblies
- Long terminal covers (100 or 120 mm) for contactors size 6 up to 14 (without box terminal) as a cover for the terminals of contactors feeded by busbar or cable lug
- One cover is necessary for one side of contactor, 2 pcs. have to be ordered for both-sided covering of one contactor

Dimensions

4) Terminal cover

Dimensions

1) 2nd auxiliary contact block, lateral
2) Auxiliary contact block, mountable on the front
3) RC element
4) Terminal cover

Terminal Covers, Size 2-12
Dimensions

2) Auxiliary contact block, mountable on the front
4) Terminal cover

DESCRIPTION	TYPE NO.	AVAILABLE	ORDER NO.
Terminal cover for contactors size 2, for one side of contactor	LSZ2	- $-\infty=0$	LSZ2D002
Terminal cover for contactors size 3, for one side of contactor	LSZ3	-080-9,	LSZ3D002
Terminal cover for size 6, contactors with cable lug or busbar	LSZ6	-5000	LSZ6D001
Terminal cover short version for size 10/12 for contactors with cable lug	LSZ6	-000-9,	LSZ6D002
Terminal cover for size 10/12	LSZE	$+\infty=0$	LSZED001
Term. cover short version for size 10/12 for contactors with cable lug	LSZE	- $-\infty$	LSZED002
Terminal cover for contactors size 14 with cable lug	LSZH		LSZHD001

Reversing Contactor Combinations Series ALEA LSW

Reversing Contactor Combinations LS, Size 00 / 0 / 2 / 3

Schrack-Info

- Fully wired Reversing contactor assemblies up to 45 kW with integrated mechanical interlock
- Additional, posible auxiliary contacts see "auxiliary contact"" for die according size of contactors LSD.
- Thermal overload relais LST (not included in Reversing contactor assemblies) are additionally necessary
- For rated current of motor 0.11 A up to 12 A ... contactors size 00. use overload relais LSTD
- For rated current of motor 1.8 A up to 25 A ... contactors size 0 . use overload relais LSTO
- For rated current of motor 5.5 A up to 50 A ... contactors size 2, use overload relais LST2
- For rated current of motor 18A up to 100A ... contactors size 3, use overload relais LST3
- Thermal overload relais LST are designed for direct mouting to contactor or in "stand alone installation" by help of holder LSZ. TE01 to DIN-rail TS35
- Higher power for Reversing contactor assemblies (> 45 kW up to 450 kW) can all be built by single components
- Therefore necessary, electronic overload relais with rated currents of $>100 \mathrm{~A}$ up to 630A for direct mouting to contactor or in "stand alone" version - on request

		LSWD07 \|	LSWD09	LSWD12	LSW012	LSW017	LSW025	LSW232	LSW240	LSW250	LSW365	LSW380	LSW395
Rated insulation voltage $\mathbf{U}_{\mathbf{i}}$	(VAC)	690											
Utilization category AC-2 and AC-3													
Rated power at 400VAC	(kW)	3	4	5,5	5,5	7,5	11	15	18,5	22	30	37	45
Rated operational current I_{e} at 380....440VAC	(A)	7	9	12	12	17	25	32	40	50	65	80	95
Ambient temperature (operation)	$\left({ }^{\circ} \mathrm{C}\right)$	$-25 \ldots+60$											
Permissible mounting position													
Rules and regulations according		IEC 60947-4-1, EN60947-4-1											

Reversing Contactor Combinations LS, Size 00 / 0 / 2 / 3
Dimensions

1) with or without LSZDW002 mechanical interlock link
2) with LSZOWOO2 mechanical interlock

Dimensions

[^11]
Reversing Contactor Combinations Series ALEA LSW

Reversing Contactor Combinations LS, Size $00 / 0$ / 2 / 3
Circuit Diagrams, Size 00

Main circuit, Size 00:

1) The LSZDWOO1 wiring set contains, among other things, wiring connectors for connecting the main circuit.

Control circuit, Size 00:
The terminal designations for the contactors comply with EN 50012. The LSZDWOO1 wiring set contains, among other things, the electrical interlock.
2) For momentary-contact operation
3) For maintained-contact operation

SO Button "OFF"
S1 Button "Clockwise ON"
S2 Button "Counter clockwise ON"
S Button "CW-OFF-CCW"
K1 Clockwise contactor

K2 Counter clockwise contactor
F1 Fuses for main circuit
F3 Fuses for control circuit
F2 Thermal overload relays

Reversing Contactor Combinations LS, Size 00 / 0 / 2 / 3
Circuit Diagrams, Size 0/2/3
LSW0/LSW2/LSW3

(1)

(2)

(3)

Main circuit, Sizes 0 to 3:

1) The LSZ.WOO1 wiring set contains, among other things, the wiring modules on the top and bottom for connecting the main current paths.

Control circuit, Sizes 0 to 3:

The terminal designations for the contactors comply with EN 50012. The LSZOWOO2 mechanical interlock contains 2 NC contact, one for each contactor interlock.
2) For momentary-contact operation
3) For maintained-contact operation

SO Button "OFF"
S1 Button "Clockwise ON"
S2 Button "Counter clockwise ON"
S Button "CW-OFF-CCW"
K1 Clockwise contactor

K2 Counter clockwise contactor
F1 Fuses for main circuit
F3 Fuses for control circuit
F2 Thermal overload relays

Reversing Contactor Combinations Series ALEA LSW

Reversing Contactor Combinations LS, Size 00 / 0 / 2 / 3

- Connection Diagrams, Size 00

Connection Diagrams, Size 0/2/3

Terminal designations according to EN 50005. LSZOW002 mechanical interlock (laterally mountable), integrated in reversing contactor assemblies (reversing starters), contains 2 NC contacts for the electrical interlock, one for each contactor.

Size 0-11kW

Size 2-22kW

| Reversing Contactors Assembly, 15 kW, AC3, 230VAC, size 2 | LSW2 | LSW23233 |
| :--- | :--- | :--- | :--- |
| Reversing Contractors Assembly, 18,5 kW, AC3, 230VAC, size 2 | LSW2 | LSW24033 |
| Reversing Contractors Assembly, 22 kW, AC3, 230VAC, size 2 | | |
| Size 3 - 45 kW | LSW2 | |
| Reversing Contractors Assembly, 30 kW, AC3, 230VAC, size 3 | LSD | |
| Reversing Contractors Assembly, 37 kW, AC3, 230VAC, size 3 | LSW3 | LSW36533 |
| Reversing Contractors Assembly, 45 kW, AC3, 230VAC, size 3 | LSW38033 | |

Mechanical Interlock for Contactors, Size 0-12

Schrack-Info

- Devices for mechanical interlocking of 2 contactors
- Mechanical interlock LSZOWOO2 for 2 contactors of size 0 up to 3 additionally contain 2 NC contacts for the electrical interlock between both contactors
- Mechanical interlock LSZ6W001 for 2 contactors of size 6 up to 12 (no auxiliary contacts are contained)
- For assembling of mechanical interlocked contactors of size 0 up to 6,2 additional connection clips are necessary
- Interlocked contactors of size 10 and 12 do not need connection clips, because they have to be fixed onto mounting plate
- When using mechanical interlock for two contactors LSR and LSU of size 0 , the "right side mounted" (4th) pole of left contactor has to be changed to the left side of contactor

Dimensions

DESCRIPTION	TYPE NO.	AVAILABLE	ORDER NO.
Mech. interlock for contactors size 0-3 (included 2 NC auxiliary contacts)	LSZO		LSZ6
Mechanical interlock for contactors size $6-12$		LSZOW002	

- Wiring Sets for Reversing Contactor Combinations, Size 0-12

LSZOW001

- Schrack-Info

- Wiring sets for "self-assembling" of Reversing contactor assemblies
- Wiring set LSZOW001 for Reversing contactor assemblies size 0 contains all necessary bridges for mains. The mechanical interlock (to be ordered seperately) increases the total breadth of contactor assembly by 10 mm . Connection clips are not necessary, this function is realised by the bridges for mains
- Wiring set LSZ2W001 for Reversing contactor assemblies size 2 contains all necessary bridges for mains and connection clips. The mechanical interlock (to be ordered seperately) increases the total breadth of contactor assembly by 10 mm
- Wiring set LSZ3W001 for Reversing contactor assemblies size 3 contains all necessary bridges for mains and connection clips. The mechanical interlock (to be ordered seperately) increases the total breadth of contactor assembly by 10 mm
- Wiring set LSZ6W002 for Reversing contactor assemblies size 6 contains all necessary bridges for mains. The mechanical interlock (to be ordered seperately) increases the total breadth of contactor assembly by 10 mm
- Wiring set LSZEWOO1 for Reversing contactor assemblies size 10 contains all necessary bridges for mains. The mechanical interlock (to be ordered seperately) increases the total breadth of contactor assembly by 10 mm
- Wiring set LSZGWOO1 for Reversing contactor assemblies size 12 contains all necessary bridges for mains. The mechanical interlock (to be ordered seperately) increases the total breadth of contactor assembly by 10 mm

DESCRIPTION	TYPE NO.	AVAILABLE	ORDER NO.
Wiring set for reversing assemblies size 0	LSZO	LSZOW001	
Wiring set for reversing assemblies size 2 , including connection clips	LSZ2		
Wiring set for reversing assemblies size 3 , including connection clips	LSZ3	LSZ2W001	
Wiring set for reversing assemblies size 12	LSZG	LSZ3W001	

Connection Clips for Contactors, Size 0-6

- Schrack-Info
- Set contain 2 clips for 1 contactor assembly (connecting of 2 contactors)
- Connection clips for direct fixing of 2 contactors (without gap) or for assembling 2 contactors with mechanical interlock in between (10 mm)
- Connection clips can be mounted without any tool

DESCRIPTION	TYPE NO.	AVAILABLE	ORDER NO.
Connection clips for 3/4-pole contactors, size 0 , not interlocked	LSZO	-000-900	LSZ0W003
Connection clips for 3/4-pole contactors, size 0, interlocked	LSZO	[-000-9,	LSZOW004
Connection clips for 4-pole contactors, size 2, interlocked	LSZ2	$-\infty 0 \div-\infty$	LSZ2W002
Connection clips for 4-pole contactors, size 3, interlocked	LSZ3	[-00-9,	LSZ3W002
Connection clips for 3 -pole contactors, size $2 / 3 / 6$, interlocked	LSZ2	$+\infty 0$	LSZ2W003
Connection clips for 3/4-pole contactors, size 2/3, not interlocked	LSZ2		LSZ2D001

Star-Delta Contactor Combinations LSY, Size 00 / 0 / 2

LSYO3233

Schrack-Info

- Fully wired Y-D contactor assemblies up to 22 kW with integrated mechanical interlock between Delta- and Star-contactor
- For additional auxiliary contacts see "auxiliary contacts" for contactors LSD.
- Thermal overload relais LST (not included at Y-D contactor assembliy) has to be ordered seperately
- Rated currrent values 0.11 A up to 12 A (up to $7,5 \mathrm{~kW}$ YD) ... for contactors size 00 . use Thermal overload relais LSTD
- Rated currrent values 1.8 A up to 25 A (up to 15 kW YD) ... for contactors size 0 use Thermal overload relais LSTO
- Rated currrent values 5.5A up to 50A (up to 22 kW YD) ... for contactors size 2 use Thermal overload relais LST2
- Rated currrent values 18 A up to 100 A (> 22 kW YD) ... for Contactors size 3 use Thermal overload relais LST3
- Thermal overload relais LST are designed for direct mouting to contactor or in "stand alone installation" by help of holder LSZ.TE01 to DINrail TS35
- Higher power for Y-D contactor assemblies (> 22 kW up to 500 kW) can all be built by existing single components. Therefore necessary, electronic overload relais with rated currents of $>100 \mathrm{~A}$ up to 630 A for direct mouting to contactor or in "stand alone" version - on request
- Adjusting values for thermal overload relais at Y-D use $=$ rated current of motor $\ln \times 0.58$

Rated Data at AC 50 Hz 400 V

| Rating | Operational
 current $\boldsymbol{I}_{\mathbf{e}}$
 kW | Motor current | Size | Line/delta | Star contactor | WYE-Delta timer |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | Order No.

Star-Delta Contactor Combinations Series ALEA LSY

Star-Delta Contactor Combinations LSY, Size 00 / 0 / 2
Dimensions

Dimensions

Dimensions

Star-Delta Contactor Combinations LSY, Size 00 / 0 / 2
Circuit Diagrams

Main circuit:

1) The LSZDWOO1 wiring set contains, among other things, wiring connectors for connecting the main circuit

Control circuit:
with LSZDO101 Y-Delta timer, laterally mounted (example circuits). The contact element K4:17/18 is only closed in the wye stage; the contact element is open in the delta stage as well as in the de-energized state. $\mathrm{S} 1(\mathrm{~S})$ is connected to clamping point K 1:33.
2) For momentary-contact operation
3) For maintained-contact operation, * Clamping point $\mathrm{K} 1: 44$ remains unwired in this version

Star-Delta Contactor Combinations Series ALEA LSY

Parallel Connectors (Star Jumper) and Feed Terminals, Size 0-12

LSZOD003

LSZ2D003

LSZ2Y005

Schrack-Info

- 3-pole Parallel connectors (star jumpers) without terminal for contactors of size 0 up to 3 can be shortened by one pole (2-pole)
- Recommended covers for Paralllconnectors for contactors of size 6-LSZ6D002, for size 10 and 12 - LSZED002
- 3-pole Feed terminals BEZOO116 and BEZOO216 with three terminals can be used either for the feeding of contactors LSD, or for the feeding of Motor protection switches BES of according size
- 1-pole Feed terminals LSZ3D001 can be used either for the feeding of contactors LSD3, or for the feeding of Motor protection switches BES3. Therefore 3 of these terminals are necessary

Dimensions

DESCRIPTION	TYPE NO.	AVAILABLE	ORDER NO.
Feed terminals			
Feed terminal, $95 \mathrm{~mm}^{2}$ for size 3, 1-pole + terminal	LSZ3		LSZ3D001
Parallel connectors			
Parallel connector, $35 \mathrm{~mm}^{2}$ for size 0, 3-pole + terminal	LSZO		LSZOD003
Parallel connector, star jumper 3-pole for contactors size 0	LSZO		LSZOY002
Parallel connector, 3-pole for contactors size 2, with feed-terminal $95 \mathrm{~mm}^{2}$	LSZ2		LSZ2D003
Parallel connector, star jumper 3-pole for contactors size 2	LSZ2	[-60-9,	LSZ2Y005
Parallel connector, star jumper 3-pole for contactors size 3	LSZ3	- $-\cdots$	LSZ3Y004
Parallel connector, star jumper 3-pole for contactors size 6	LSZ6		LSZ6Y003
Parallel connector, star jumper 3-pole for contactors size 10, 12	LSZE		LSZEY003

- Wiring Sets for Star-Delta Contactor Combinations, Size 0-2

■ Schrack-Info

- Wiring sets for "self assembling" of Y-D contactor assemblies
- Wiring set LSZOYOO1 for Y-D contactor assemblies size 0-0-0 (up to 15 kW) includes all necessary bridges for mains. The mechanical interlock (to be ordered seperately) increases the total breadth of contactor assembly by 10 mm . Connection clips and star jumper also are included. The Y - D timer also has to be ordered seperately
- Wiring set LSZ2YOO3 for Reversing contactor assemblies size 2-2-2 (up to 37 kW) only includes the wiring for bottom side of contactors and the star jumper. For feeding Net- and Delta-contactor double infeed is recommended. The mechanical interlock (to be ordered seperately) increases the total width of contactor assembly by 10 mm . Connection clips are - because of recommended mounting plate LSZ2Y002 - not necessary. The Y-D timer also has to be ordered seperately
- Wiring sets or mounting plates for assemblies of size 3 up to 12 - on request

DESCRIPTION	TYPE NO.	AVAILABLE	ORDER NO.
Wiring set for Y-D assemblies size 0-0-0, including wiring, connection clips and star jumper	LSZO	-500	LSZOYOO1
Wiring set for Y-D assemblies size 2-2-0, including wiring bottom and star jumper	LSZ2	LSZ2Y004	
Wiring set for Y-D assemblies size 2-2-2, including wiring bottom and star jumper	LSZ2	LSZ2Y003	
Base-plate for YD-assemblies, size 2-2-0, for side arranged YD relay	LSZ2	LSZ2Y001	
Base-plate for YD-assemblies, size 2-2-2, for side arranged YD relay	LSZ2	LSZ2Y002	

Contactors Series CUBICO Mini, 3-pole

Contactors Series CUBICO Mini, 3-pole

■ Schrack-Info

- Contactors from $3 \mathrm{~kW} / 6 \mathrm{~A}, 4 \mathrm{~kW} / 9 \mathrm{~A}$ or $5,5 \mathrm{~kW} / 12 \mathrm{~A}, 3$-pole with integrated auxiliary contact
- Available with $230 \mathrm{VAC}, 24 \mathrm{VAC}$ or 24 VDC - coil
- Auxiliary contact NC or NO, depends of type
- Fitting surge suppressors are available
- Mountable to DIN-rail TS35 or mounting plate
- Further accessories find attached

		LZDM06	LZDM09	LZDM 12
Rated insulation voltage U_{i}	(VAC)	690		
Utilization category AC-1 $\cos \varphi=1$				
Rated operational current I_{e} at $40^{\circ} \mathrm{C}$	(A)	20	20	20
Utilization category AC-2 and AC-3				
Rated power at 400VAC	(kW)	2,2	4	5,5
Rated operational current I_{e} 400VAC	(A)	6	9	12
Ambient temperature (operation)	$\left({ }^{\circ} \mathrm{C}\right)$	-5 ... +40		
Permissible mounting position		Horizontal and verrical $+/-22.5^{\circ}$		
Rules and regulations according		IEC/EN 60947-4-1		

Dimensions

Circuit Diagrams

1) 3-pole with auxiliary contact, 1 NO
2) 3-pole with auxiliary contact, 1 NC

- Connection Diagrams

Lzom. 1	Lzom. 2.

Contactors Series CUBICO Mini, 3-pole

DESCRIPTION	AVAILABLE	ORDER NO.
6A		
3 -pole, 3kW, 6A, 1NO, 230VAC		LZDM0613
3 -pole, 3kW, 6A, 1NC, 230VAC	$+\infty=0$	LZDM0623
3 -pole, 3kW, 6A, 1NO, 24VAC	- -0×0	LZDM0610
3-pole, 3kW, 6A, 1NC, 24VAC	$+80 \%-\infty$	LZDM0620
3 -pole, 3kW, 6A, 1NO, 24VDC	-000-9,	LZDM0615
3 -pole, 3kW, 6A, 1NC, 24VDC	$+\infty=0$	LZDM0625
9A		
3 -pole, 4kW, 9A, 1NO, 230VAC		LZDM0913
3 -pole, 4kW, 9A, 1NC, 230VAC	$+00 \div-6$	LZDM0923
3 -pole, 4kW, 9A, 1NO, 24VAC	$+50-6$	LZDM0910
3 -pole, 4kW, 9A, 1NC, 24VAC		LZDM0920
3-pole, 4kW, 9A, 1NO, 24VDC	$+50-\infty$	LZDM0915
3-pole, 4kW, 9A, 1NC, 24VDC		LZDM0925
12A		
3 -pole, $5,5 \mathrm{~kW}, 12 \mathrm{~A}, 1 \mathrm{NO}, 230 \mathrm{VAC}$		LZDM1213
3 -pole, 5,5kW, 12A, 1NC, 230VAC	$+\infty=\infty$	LZDM1223
3-pole, 5,5kW, 12A, 1NO, 24VAC	$+\infty=0$	LZDM1210
3-pole, 5,5kW, 12A, 1NC, 24VAC	$+\infty 0-\infty$	LZDM1220
3-pole, 5,5kW, 12A, 1NO, 24VDC	$+000-6$	LZDM1215
3-pole, 5,5kW, 12A, 1NC, 24VDC		LZDM1225

Contactors Series CUBICO Mini, 3-pole

Accessories Series CUBICO Mini

Schrack-Info

- Auxiliary contacts for front-mounting for contactors series CUBICO Mini
- Protective modules for 24 V and 230 V coil of the contactors

Dimensions

Circuit Diagram

LZZMH022	LZZMV...
$51 \quad 637381$	\sim / \pm
$\begin{array}{llll}52 & 64 \quad 74 \quad 82\end{array}$	\sim / \pm

Connection Diagram

DESCRIPTION	AVAILABLE	ORDER NO.
Auxiliary contacts		
Auxiliary contacts front-type for CUBICO Mini 2NO+2NC		
Surge supressors		
Varistor Mini $24-48 \mathrm{VAC} / \mathrm{DC}$	LZZMH022	
Varistor Mini $110-250 \mathrm{VAC}$		

- Contactors Series CUBICO Classic, 3-pole

- Schrack-Info
- Contactors from $4 \mathrm{~kW} / 9 \mathrm{~A}$ up to $18,5 \mathrm{~kW} / 38 \mathrm{~A}$
- 3-pole with integrated auxiliary contact
- Avialable with $230 \mathrm{VAC}, 24 \mathrm{VAC}$ or 24 VDC - coil
- Auxiliary contact NC or NO, depends of type
- Fitting surge suppressors are available
- Mountable to DIN-rail TS35 or mounting plate
- Further accessories find attached

LZDC32BO

LZDC09	LZDC12	LZDC18	LZDC25	LZDC32	LZDC38
L90					

		LZDC09	LZDC12	LZDC18	LZDC25	LZDC32	LZDC38
Rated insulation voltage U_{i}	(VAC)	690					
Utilization category AC-1 $\cos \varphi=1$							
Rated operational current I_{e} at $40^{\circ} \mathrm{C}$	(A)	25	25	32	40	50	50
Utilization category AC-2 and AC-3							
Rated power at 400VAC	(kW)	4	5,5	7,5	11	15	18,5
Rated operational current I_{e} 400VAC	(A)	9	12	18	25	32	38
Ambient temperature (operation)	$\left({ }^{\circ} \mathrm{C}\right)$	$-5 \ldots+40$					
Permissible mounting position		Horizontal and vertical +/-22.5					
Rules and regulations according		IEC/EN 60947-4-1					

Dimensions

LZDC09.., LZDC12.., LZDC18..

LZDC25.., LZDC32.., LZDC38..

Connection Diagram

Circuit Diagram

Contactors Series CUBICO Classic, 3-pole

Contactors Series CUBICO Classic, 3-pole

DESCRIPTION	AVAILABLE	ORDER NO.
4kW / 9A		
3 -pole, 4kW, 9A, 1NO+1NC, 230VAC		
3 -pole, $4 \mathrm{~kW}, 9 \mathrm{~A}, 1 \mathrm{NO}+1 \mathrm{NC}, 24 \mathrm{VAC}$		LZDC09B3
3 -pole, 4kW, 9A, $1 \mathrm{NO}+1 \mathrm{NC}, 24 \mathrm{VDC}$		LZDCO9BO

5,5kW / 12A

3 -pole, $5,5 \mathrm{~kW}, 12 \mathrm{~A}, 1 \mathrm{NO}+1 \mathrm{NC}, 230 \mathrm{VAC}$		LZDC12B3	
3 -pole, $5,5 \mathrm{~kW}, 12 \mathrm{~A}, 1 \mathrm{NO}+1 \mathrm{NC}, 24 \mathrm{VAC}$			
3 -pole, $5.5 \mathrm{~kW}, 12 \mathrm{~A}, 1 \mathrm{NO}+1 \mathrm{NC}, 24 \mathrm{VDC}$		LZDC12BO	

7,5kW / 18A

3 -pole, $7,5 \mathrm{~kW}, 18 \mathrm{~A}, 1 \mathrm{NO}+1 \mathrm{NC}, 230 \mathrm{VAC}$		LZDC18B3	
3 -pole, $7,5 \mathrm{~kW}, 18 \mathrm{~A}, 1 \mathrm{NO}+1 \mathrm{NC}, 24 \mathrm{VAC}$			
3 -pole, $7.5 \mathrm{~kW}, 18 \mathrm{~A}, 1 \mathrm{NO}+1 \mathrm{NC}, 24 \mathrm{VDC}$		LZDC18BO	

II kW / 25A

3 -pole, $11 \mathrm{~kW}, 25 \mathrm{~A}, 1 \mathrm{NO}+1 \mathrm{NC}, 230 \mathrm{VAC}$			
3 -pole, $11 \mathrm{~kW}, 25 \mathrm{~A}, 1 \mathrm{NO}+1 \mathrm{NC}, 24 \mathrm{VAC}$			
$\mathbf{1 5 k W} / 32 \mathrm{~A}$			
3 -pole, $15 \mathrm{~kW}, 32 \mathrm{~A}, 1 \mathrm{NO}+1 \mathrm{NC}, 230 \mathrm{VAC}$		LZDC25B3	
3 -pole, $15 \mathrm{~kW}, 32 \mathrm{~A}, 1 \mathrm{NO}+1 \mathrm{NC}, 24 \mathrm{VAC}$		LZDC25BO	

18,5kW / 38A

3 -pole, $18,5 \mathrm{~kW}, 38 \mathrm{~A}, 1 \mathrm{NO}+1 \mathrm{NC}, 230 \mathrm{VAC}$	$-\infty 000$	LZDC38B3
3 -pole, $18,5 \mathrm{~kW}, 38 \mathrm{~A}, 1 \mathrm{NO}+1 \mathrm{NC}, 24 \mathrm{VAC}$	LZDC38B0	

Accessories Series CUBICO Classic

Schrack-Info

- Auxiliary contacts for front or side-mounting for contactors series CUBICO Classic
- Mechanical interlock for two contactors series Classic
- Protective modules for 24 V and 230 V coil of the contactors

Dimensions

Dimensions

Circuit Diagrams

LCCH031	LCCH022	LCCHO2O	LZZCH002	LCCH011	LCCCH711
53617383	53617183	5363	5161	5361	13/43 21/31
$\pm 4+1$	$1-4$	1	4	$1-14$	$1-1$
${ }_{54}{ }^{1}+7484$	54627284	$54 \quad 64$		$54 \quad 62$	14/44 ${ }^{\text {22/32 }}$

Contactors Series CUBICO Classic, 3-pole

Accessories Series CUBICO Classic

DESCRIPTION	AVAILABLE	ORDER NO.
Auxiliary contact block		
Auxiliary contact front-type for CUBICO Classic, 3NO+1NC	-000-6,	LZZCH031
Auxiliary contact front-type for CUBICO Classic, 2NO+2NC	-000-9,	LZZCH022
Auxiliary contacts front-type for CUBICO Classic, 2NO	-000-9,	LZZCH020
Auxiliary contact front-type for CUBICO Classic, 2NC	- $\times 0 \times 1$	LZZCH002
Auxiliary contact front-type for CUBICO Classic, 1NO+1NC	-000-9,	LZZCH011
Auxiliary contact block - side		
Auxiliary contact side-type for CUBICO Classic, 1NO+1NC	- $-\cdots$	LZZCH711
Mechanical interlock		
Mechanical interlock for CUBICO Classic	-000-6,	LZZCL001
Surge supressors		
Varistor Classic 24-48V AC/DC		LZZCV024
Varistor Classic 110-250 V AC	$\begin{array}{r} -600 \\ \hline \end{array}$	LZZCV230

Technical Information
Terminal Screws

Devices	Kind of connection							
Type	Screw with washer	Screw with clamp box		$\begin{aligned} & \text { Screw } \\ & \text { w.nut } \end{aligned}$		Screw driver		lb. inch
Micro Contactors, all conductors K0-..	M2,5	-	-	-	5		0.6-0.8	5-7
Mini Contactors, all conductors K1-..	M3,5	-	-	-			0.8-1.4	7-12
Auxiliary Contactors, all conductors K(G)3-07..	M3,5	-	-	-	5		0.8-1.4	7-12
Contactors Main conductor K(G)3-10.. to K3-22.. K(G)3-24.. to K3-40.. K3-50.. to K3-74..	M3,5	M5 M6			(5)	$\begin{aligned} & \text { Pz2 } \\ & \text { Pz2 } \\ & \text { Pz3 } \end{aligned}$	$\begin{gathered} 0.8-1.4 \\ 2.5-3 \\ 3.5-4.5 \end{gathered}$	$\begin{gathered} 7-12 \\ 22-26 \\ 31-40 \end{gathered}$
K2-23, -30, -37A00-40 $\mathrm{K} 2-45,-60 \mathrm{~A} 00-40$	M4	M6			$\sqrt{4}$	$\begin{aligned} & \mathrm{Pz} 2 \\ & \mathrm{Pz} 3 \end{aligned}$	$\begin{aligned} & 1.2-1.8 \\ & 3.5-4.5 \end{aligned}$	$\begin{aligned} & 11-16 \\ & 31-40 \end{aligned}$
K3-90, K3-115	-	-	M8	-	(1)	4 mm hex socket	4-6.5	35-57
$\begin{aligned} & \text { K3-116.. to K3-176.. } \\ & \text { K3-210.. to K3-316 } \\ & \text { K3-450.. and K3-550.. } \end{aligned}$	- - -			M8 M10 M 12	\square		$\begin{aligned} & 17 \\ & 35 \\ & 60 \end{aligned}$	$\begin{aligned} & 150 \\ & 315 \\ & 540 \end{aligned}$
Auxiliary conductor K(G)3-10 to K3-22 Coil conductor $K(G) 3-10 \text { to K3-550 }$	M3,5 M3,5	- -			$4 \sqrt{3}$	$\begin{aligned} & \text { Pz2 } \\ & \text { Pz2 } \end{aligned}$	0.8-1.4 0.8-1.4	$\begin{aligned} & 7-12 \\ & 7-12 \end{aligned}$
Accessories HK, HKM HA, HN, K2-.., HB..	$\begin{aligned} & M 3,5 \\ & M 3,5 \end{aligned}$	-		-		$\begin{aligned} & \text { Pz2 } \\ & \text { Pz2 } \end{aligned}$	$\begin{aligned} & 0.8-1.4 \\ & 0.8-1.4 \end{aligned}$	$\begin{aligned} & 7-12 \\ & 7-12 \end{aligned}$

Technical Specification - Electromechanical Contactors Series LA

Micro Contactors LA, Size M

Technical Specifications according to IEC 60947-4-1, VDE 0660, EN 60947-4-1

Micro Contactors LA, Size M

Technical Specifications according to IEC 60947-4-1, VDE 0660, EN 60947-4-1

Main contacts		Type	K0-05D
Utilization category DC1			
Switching of resistive load	1 pole 24 V	A	12
Time constant $\mathrm{L} / \mathrm{R} \leq 1 \mathrm{~ms}$	60 V	A	12
Rated operational current $\mathrm{I}_{\text {e }}$	110 V	A	-
	220 V	A	-
	3 poles in series 24 V	A	12
	60 V	A	12
	110 V	A	12
	220 V	A	-
Utilization category DC3 and DC5			
Switching of shunt motors	1 pole 24V	A	12
and series motors	60 V	A	-
Time constant $\mathrm{L} / \mathrm{R} \leq 15 \mathrm{~ms}$	110 V	A	-
Rated operational current $\mathrm{I}_{\text {e }}$	220 V	A	-
	3 poles in series 24 V	A	12
	60 V	A	12
	110 V	A	12
	220 V	A	-
Maximum ambient temperature			
Operation	open	${ }^{\circ} \mathrm{C}$	-40 to $+60(+90)^{11}$
	enclosed	${ }^{\circ} \mathrm{C}$	-40 to +40
Storage		${ }^{\circ} \mathrm{C}$	-50 to +90
Short circuit protection			
for contactors without thermal overload relay			
Coordination-type " 1 " according to IEC 947-4-1			
Contact welding without hazard of persons max. fuse size	gl (gG)	A	32
Coordination-type "2" according to IEC 947-4-1			
Light contact welding accepted			
max. fuse size	gL (gG)	A	-
Contact welding not accepted max. fuse size	gL (gG)	A	-
For contactors with thermal overload relay the device with the smaller admissible backup ruse (contactor of thermal overload relay) determines the fuse size			
Cable cross-sections			
for contactors			
main connector	solid of stranded	mm^{2}	0.5-1.5
	flexible	mm^{2}	0.5-1.5
	flexible with multicore cable end	mm^{2}	0.5-1.5
Cables per clamp			2
	solid of stranded	AWG	20-14
Frequency of operation z	without load	1/h	10000
contactors without thermal overload relay	AC3, I	1/h	600
	AC4, I	1/h	120
	DC3, I	1/h	600
Mechanical life	AC operated	5×10^{6}	3
	DC operated	5×10^{6}	4
Short time current	10s-current	A	50
Power loss per pole	at $\mathrm{I}_{\mathrm{e}} /$ AC3 400 V	W	0.2
Resistance to shock according to IEC 68-2-27			
Shock time 20 ms sine-wave			
AC operated	NO	9	2.5
	NC	g	2.5

[^12]Technical Specification - Electromechanical Contactors Series LA

Micro Contactors LA, Size M

Technical Specifications according to IEC 60947-5-1, VDE 0660, EN 60947-5-1

Auxiliary contacts		Type	KO-04D
KO-05D			

1) Suitable at 690 V for: earthed-neutral systems, overvoltage category I to III, pollution degree 3 (standard industry): $\mathrm{U}_{\mathrm{imp}}=4 \mathrm{kV}$. Data for other conditions on request.
2) $90^{\circ} \mathrm{C}$: reduces the control voltage range to 0.9 up to $1.0 \times \mathrm{U}_{\mathrm{s}}$ and reduces the thermal rated current lth to le/ ACl 15 .
3) Summary switching time $=$ release time + arc duration.

Micro Contactors LA, Size M
Motor Rating and Breaking Current (K0-05D)
a)
$P_{n}=A C 4$
380/ 220/
400 V 230 V
kW kW

$$
I_{a}\left(=I_{e}=A C 1\right)
$$

1) Millions of Operations
a) Motor Rating
b) Breaking Current

Technical Specification - Electromechanical Contactors Series LA

Mini Contactors LA, Size 1

Technical Specifications according to IEC 947-4-1, VDE 0660, EN 60947-4-1

Main contacts		Type	K1-09D
Rated insulation voltage $\mathbf{U}_{\mathbf{i}}$		V AC	$690{ }^{11}$
Making capacity $\mathrm{l}_{\text {eff }}$	at $\mathrm{U}_{\mathrm{e}}=690 \mathrm{VAC}$	A	165
Breaking capacity $\mathrm{l}_{\text {eff }}$	400 V AC	A	100
$\cos \varphi=0.65$	500 V AC	A	90
	690 VAC	A	80
Utilization category AC1 - Switching of resistive load			
Rated operational current $\mathrm{I}_{\mathrm{e}}\left(=I_{t+1}\right)$ at $40^{\circ} \mathrm{C}$, open		A	20
Rated operational power of three-phase resistive loads	230 V	kW	7.9
$50-60 \mathrm{~Hz}, \cos \varphi=1$	240 V	kW	8.3
	400 V	kW	13.8
	415 V	kW	14.3
Rated operational current $I_{e}\left(=l_{t+1}\right)$ at $60^{\circ} \mathrm{C}$, enclosed		A	16
Rated operational power of three-phase resistive loads	230 V	kW	6.3
$50-60 \mathrm{~Hz}, \cos \varphi=1$	240 V	kW	6.7
	400 V	kW	11
	415 V	kW	11.5
Minimum cross-section of conductor at load with $\mathrm{I}_{\mathrm{e}}\left(=\mathrm{I}_{\mathrm{t}_{\mathrm{t}}}\right)$		mm^{2}	2.5
Utilization category AC2 and AC3 - Switching of three-phase motors			
Rated operational current $\mathrm{I}_{\text {e }}$	220 V	A	12
open and enclosed	230 V	A	11.5
	240 V	A	11
	380-400V	A	9
	415-440V	A	8
	500 V	A	7
	660-690V	A	5
Rated operational power of three-phase motors	220-240V	kW	3
$50-60 \mathrm{~Hz}$	380-440V	kW	4
	500-690V	kW	4
Utilization category AC4 - Switching of squirrel cage motors, inching			
Rated operational current $\mathrm{I}_{\text {e }}$	220 V	A	12
open and enclosed	230 V	A	11.5
	240 V	A	11
	380-400V	A	9
	415-440V	A	8
	500 V	A	7
	660-690V	A	5
Rated operational power of three-phase motors	220-240V	kW	3
$50-60 \mathrm{~Hz}$	380-440V	kW	4
	500-690V	kW	4
Utilization category AC5a - Switching of gas discharge lamps			
Rated operational current l_{e} per pole at $220 / 230 \mathrm{~V}$			
Fluorescent lamps,			
	uncompensated and serial compensated	A	10
	parallel compensated	A	2
	dual-connection	A	16
Metal halide lamps ${ }^{31}$,			
	uncompensated	A	10
	parallel compensated	A	2
Mercury-vapour lamps ${ }^{41}$			
	uncompensated	A	16
	parallel compensated	A	2
Mixed light lamps ${ }^{51}$		A	16

LED-Lamps

consider the inrush current of the lamp ballast
max. lamps per pole \qquad
and $\cos \varphi$ of the lamp
$\left(1_{\text {nIED }} \leq I_{l_{t \mid}}\right)=$ inrush current of lamp/EVG

max. inrush current of contactor	A	
Utilization category AC5b Switching of incandescent lamps ${ }^{6 /}$	A	
Rated operational current le per pole at $220 / 230 \mathrm{~V}$	8	

Rated operational current le per pole at 220/230 V
A
8

1) Suitable at 690V for: earthed-neutral systems, overvoltage category I to IV, pollution degree 3 (standard-industry): $\mathrm{U}_{\mathrm{imp}}=8 \mathrm{kV}$. Data for other conditions on request.
2) Metal halide lamps and sodium-vapour lamps (high- and low-pressure lamps).
3) High-pressure lamps.
4) Blended lamps, containing a mercury high-pressure unit and a tungsten helix in a fluorescent glass bulb (daylight lamps).
5) Current inrush approx. 16×1

Mini Contactors LA, Size 1

Technical Specifications according to IEC 947-4-1, VDE 0660, EN 60947-4-1

Main contacts		Type	K1-09D
Utilization category DC1			
Switching of resistive load	1 pole 24V	A	20
Time constant $\mathrm{L} / \mathrm{R} \leq 1 \mathrm{~ms}$	60 V	A	20
Rated operational current $I_{\text {e }}$	110 V	A	5
	220 V	A	0.6
	3 poles in series 24 V	A	20
	60 V	A	20
	110 V	A	20
	220 V	A	16
Utilization category DC3 and DC5			
Switching of shunt motors	1 pole 24V	A	20
and series motors	60 V	A	5
Time constant $\mathrm{L} / \mathrm{R} \leq 15 \mathrm{~ms}$	110 V	A	1
Rated operational current $\mathrm{I}_{\text {e }}$	220 V	A	0.15
	3 poles in series 24 V	A	20
	60 V	A	20
	110 V	A	20
	220 V	A	2
Maximum ambient temperature			
Operation	open	${ }^{\circ} \mathrm{C}$	-40 to $+60(+90)^{11}$
	enclosed	${ }^{\circ} \mathrm{C}$	-40 to +40
with thermal overload relay	open	${ }^{\circ} \mathrm{C}$	-25 to +60
	enclosed	${ }^{\circ} \mathrm{C}$	-25 to +40
Storage		${ }^{\circ} \mathrm{C}$	-50 to +90
Short circuit protection - for contactors without thermal overload relay			
Coordination-type " 1 " according to IEC 947-4-1			
Contact welding without hazard of persons max. fuse size	$\mathrm{gL}(\mathrm{gG})$	A	40
Coordination-type "2" according to IEC 947-4-1			
Light contact welding accepted			
max. fuse size	$\mathrm{gL}(\mathrm{gG})$	A	25
Contact welding not accepted			
max. fuse size	$g \mathrm{l}$ (gG)	A	10
For contactors without thermal overload relay the device with the smaller admissible backup fuse			
(contactor or thermal overload relay) determines the fuse size.			
Cable cross-sections			
for contactors without thermal overload relay			
main connector	solid or stranded	mm^{2}	0.5-2.5
	flexible	mm^{2}	0.5-2.5
	flexible with multicore cable end	mm^{2}	0.5-1.5
Cables per clamp			2
	solid or stranded	AWG	18-14
Frequency of operations z	without load	1/h	10000
Contactors without thermal overload relay	AC3, I	1/h	600
	AC4, $\mathrm{I}_{\text {e }}$	1/h	120
	DC3, I_{e}	1/h	600
Mechanical life	AC operated - $\mathrm{S}_{\text {x }}$	106	5
	DC operated - Sx	106	15
Short time current	10s-current	A	96
Power loss per pole	at le/AC3 400V	W	0.15
Resistance to shock according to IEC 68-2-27			
Shock time 20 ms sine-wave			
AC operated	NO	g	5
	NC	g	5
DC operated	NO	g	8
	NC	g	6

1) $90^{\circ} \mathrm{C}$: reduces the control voltage range to 0.9 up to $1.0 \times \mathrm{U}_{\mathrm{s}}$ and reduces the rated current $\mathrm{I}_{\mathrm{e}} / \mathrm{AC} 1$ to the value of $\mathrm{I}_{\mathrm{e}} / \mathrm{AC} 3$

Technical Specification - Electromechanical Contactors Series LA

Mini Contactors LA, Size 1

- Technical Specifications according to IEC 947-5-1, VDE 0660, EN 60947-5-1

Auxiliary contacts		Type	K1-09D	$\mathrm{K} 1-09 \mathrm{D}=$	HK			
Rated insulation voltage $\mathbf{U}_{\mathbf{i}}$		VAC	690^{11}	6901	6901)			
Thermal rated current $\mathrm{Ith}^{\text {to }}$ to 690 V								
Ambient temperature	$40^{\circ} \mathrm{C}$	A	10	10	10			
	$60^{\circ} \mathrm{C}$	A	6	6	6			
Power loss per pole	at $\mathrm{l}_{\text {th }}$	W	0.5	0.5	0.5			
Utilization category AC15								
Rated operational current $\mathrm{I}_{\text {e }}$	220-240V	A	3	3	3			
	380-415V	A	2	2	2			
	440 V	A	1.6	1.6	1.6			
	500 V	A	1.2	1.2	1.2			
	660-690V	A	0.6	0.6	0.6			
Utilization category DC13								
Rated operational current $\mathrm{I}_{\text {e }}$	60 V	A	2	2	2			
	110 V	A	0.4	0.4	0.4			
	220 V	A	0.1	0.1	0.1			
Maximum ambient temperature								
Operation	open	${ }^{\circ} \mathrm{C}$	-40 to $+60(+90)^{31}$					
		${ }^{\circ} \mathrm{C}$	-40 to +40					
Storage		${ }^{\circ} \mathrm{C}$	-40 to +90					
Short circuit protection								
short-circuit current 1 kA contact welding not accepted			20	20	20			
max. fuse size	$\mathrm{gL}(\mathrm{gG})$	A						
For contactors with thermal overload relay the device with the smaller admissible control fuse (contactor or thermal overload relay) determines the fuse size.								
Power consumption of coils								
AC operated	inrush	VA	25	-	-			
	sealed	VA	4-5	-	-			
		W	1.2	-	-			
DC operated	inrush	W	-	2.5	-			
	sealed	W	-	2.5	-			
Operation range of coils			19-30 V DC	0.8-1.1	-			
in multiples of control voltage U_{5}			0.85-1.1					
Switching time at control voltage $\mathrm{U}_{5} \pm 10 \%{ }^{4 / 5}$								
AC operated	make time	ms	15-19	-	-			
	release time	ms	8-25	-	-			
	arc duration	ms	10-15	-	-			
DC operated	make time	ms	-	15-25	-			
	release time	ms	-	8-25	-			
	arc duration	ms	-	10-15	-			
Cable cross-section								
all connectors	solid	mm^{2}	0.5-2.5	0.5-2.5	0.5-2.5			
	flexible	mm^{2}	0.5-2.5	0.5-2.5	0.5-2.5			
	flexible with multicore cable end	mm^{2}	0.5-1.5	0.5-1.5	0.5-1.5			
Clamps per pole			2	2	2			

1) Suitable at 690 V for: earthed-neutral systems, overvoltage category I to IV, pollution degree 3 (standard-industry): $\mathrm{U}_{\mathrm{imp}}=8 \mathrm{kV}$. Data for other conditions on request.
2) $90^{\circ} \mathrm{C}$: reduces the control voltage range to 0.9 up to $1.0 \times \mathrm{U}_{\mathrm{s}}$ and reduces the thermal rated current lth to the value of le/ ACl 15 .
3) Summary switching time $=$ release time + arc duration.
4) Release time of NC make time of NO increase when suppressor units for voltage peak protection are use (Varistor, RC-units, Diode units).

Mini Contactors LA, Size 1
Motor Rating and Breaking Current (K1-09D)
a) $P_{n}=A C 4$

b)

1) Millions of Operations
a) Motor Rating
b) Breaking Current

Technical Specification - Electromechanical Contactors Series LA

Auxiliary Contactors LA

Technical Specifications according to IEC 947-5-1, VDE 0660, EN 60947-5-1

		Type	K3-07ND	K3-07ND=	KG3-07A	KG3-07D
Rated insulation voltage $\mathrm{U}_{\mathbf{i}}{ }^{\text {1/ }}$		VAC ${ }^{11}$	690	690	690	690
Thermal rated current $\mathrm{I}_{\text {th }}$ to 690V						
Ambient temperature	$40^{\circ} \mathrm{C}$	A	10	10	20	10
	$60^{\circ} \mathrm{C}$	A	6	6	16	6
Frequency of operations z		1/h	10000	10000	10000	10000
Mechanical life		5×10^{6}	10	10	10	50
Utilization category AC15						
Rated operational	$220-240 \mathrm{~V}$	A	4	4	12	4
current I	380-415V	A	2	2	4	2
	440 V	A	1.6	1.6	4	1.6
	500 V	A	1.2	1.2	3	1.2
	660-690V	A	0.6	0.6	1	0.6
Utilization category DC13						
Rated operational	24-60V	A	3.5	3.5	8	3.5
current $I_{\text {e }}$	110 V	A	0.5	0.5	1	0.5
per pole	220 V	A	0.1	0.1	0.1	0.1
Power consumption of coils						
AC operated	inrush	VA	30-45	-	-	-
	sealed	VA	7-10	-	-	-
		W	2.6-3	-	-	-
DC operated	inrush	W	-	75	3	3
	sealed	W	-	2	3	3
Operation range of coils						
in multiples of control voltage U_{5}			0.85-1.1	0.8-1.1	0.8-1.1	0.8-1.1
Switching time at control voltage $\mathrm{U}_{\mathbf{s}} \pm 10 \%$						
	make time	ms	8-16	8-16	65-85	65-85
	release time	ms	5-13	5-13	$20-30^{31}$	$20-30^{3 /}$
Maximum ambient temperature						
Operation	open	${ }^{\circ} \mathrm{C}$	-40 to $+60(+90)^{21}$			
	enclosed	${ }^{\circ} \mathrm{C}$	-40 to +40			
Storage		${ }^{\circ} \mathrm{C}$	-40 to +90			
Short circuit protection						
short-circuit current 1 kA , contact welding not accepted						
max. fuse size	gL (gG)	A	20	20	25	20
Cable cross-section						
Connector	solid	mm^{2}	0.75-6			
	flexible	mm^{2}	1-4			
	flexible with multicore cable end	mm^{2}	0.75-4			
Magnet coil	solid	mm^{2}	0.75-2.5			
	flexible	mm^{2}	0.75-2.5			
	flexible with multicore cable end	mm^{2}	0.5-1.5			
Clamps per pole			2			
Connector	solid	AWG	18-10			
	flexible	AWG	18-10			
Clamps per pole			2			
Magnet coil	solid	AWG	14-12			
	flexible	AWG				
Clamps per pole			2			

1) Suitable at 690 V for: earthed-neutral systems, overvoltage category I to IV, pollution degree 3 (standard-industry): $\mathrm{U}_{\text {imp }}=8 \mathrm{kV}$. Data for other conditions on request.
2) 90° reduces the control voltage range to 0.9 up to $1.0 \times \mathrm{U}_{\mathrm{s}}$ and reduces the thermal rated current $\mathrm{I}_{\mathrm{t}} / \mathrm{ACl}$ to the value of $\mathrm{I}_{\mathrm{e}} / \mathrm{ACl5}$
3) With built-in coil suppressor.

- Capacitor Switching Contactors LA, Size 3

Rated Operational Power at $50 / 60 \mathrm{~Hz}$

Ambient Te $50^{\circ} \mathrm{C}$	rature		$60^{\circ} \mathrm{C}$			Auxiliary Contacts Built-in Add.			Type		Coil voltage ${ }^{11}$	
$\begin{aligned} & \hline 380 \mathrm{~V} \\ & 400 \mathrm{~V} \\ & \text { kVAr } \end{aligned}$	$\begin{aligned} & 415 \mathrm{~V} \\ & 440 \mathrm{~V} \\ & \mathrm{kVAr} \end{aligned}$	$\begin{aligned} & 660 \mathrm{~V} \\ & 690 \mathrm{~V} \\ & \mathrm{kVAr} \end{aligned}$	$\begin{aligned} & \hline 380 \mathrm{~V} \\ & 400 \mathrm{~V} \\ & \mathrm{kVAr} \end{aligned}$	$\begin{aligned} & 415 \mathrm{~V} \\ & 440 \mathrm{~V} \\ & \mathrm{kVAr} \end{aligned}$	$\begin{aligned} & 660 \mathrm{~V} \\ & 690 \mathrm{~V} \\ & \mathrm{kVAr} \end{aligned}$	NO	NC	pcs.			$\begin{aligned} & \text { Pack } \\ & \text { pcs. } \end{aligned}$	$\begin{aligned} & \text { Weight } \\ & \mathrm{kg} / \mathrm{pc} . \end{aligned}$
$\begin{aligned} & 0-12.5 \\ & 0-12.5 \end{aligned}$	$\begin{aligned} & 0-13 \\ & 0-13 \end{aligned}$	$\begin{aligned} & 0-20 \\ & 0-20 \end{aligned}$	$\begin{aligned} & 0-12.5 \\ & 0-12.5 \end{aligned}$	$\begin{aligned} & 0-13 \\ & 0-13 \end{aligned}$	$\begin{aligned} & 0-20 \\ & 0-20 \end{aligned}$	1	1	$\begin{aligned} & 1^{21} \\ & 1^{21} \end{aligned}$	K3-18NK 10 K3-18NKOI		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 0.34 \\ & 0.34 \end{aligned}$
	$\begin{aligned} & 10.5-22 \\ & 10.5-27 \end{aligned}$	$\begin{aligned} & 17-33 \\ & 17-41 \\ & \hline \end{aligned}$	$\begin{aligned} & 10-20 \\ & 10-25 \end{aligned}$	$\begin{aligned} & 10.5-22 \\ & 10.5-27 \\ & \hline \end{aligned}$	$\begin{aligned} & 17-33 \\ & 17-41 \\ & \hline \end{aligned}$		-	$\begin{aligned} & 3^{31} \\ & 3^{31} \end{aligned}$	$\begin{aligned} & \text { K3-24K00 } \\ & \text { K3-32K00 } \\ & \hline \end{aligned}$	$\begin{aligned} & 230 \\ & 230 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 0.62 \\ & 0.62 \end{aligned}$
$\begin{aligned} & 20-33.3 \\ & 20-50 \\ & 20-75^{4)} \end{aligned}$	$\begin{array}{r} 23-36 \\ 23-53 \\ 23-75^{4)} \\ \hline \end{array}$	$\begin{gathered} 36-55 \\ 36-82 \\ 36-120^{4)} \end{gathered}$	$\begin{gathered} 20-33.3 \\ 20-50 \\ 20-60 \\ \hline \end{gathered}$	$\begin{aligned} & 23-36 \\ & 23-53 \\ & 23-64 \\ & \hline \end{aligned}$	$\begin{gathered} 36-55 \\ 36-82 \\ 36-100 \\ \hline \end{gathered}$	-	-	$\begin{aligned} & 3^{31} \\ & 3^{31} \\ & 3^{31} \end{aligned}$	$\begin{aligned} & \text { K3-50K00 } \\ & \text { K3-62K00 } \\ & \text { K3-74K00 } \\ & \hline \end{aligned}$	$\begin{aligned} & 230 \\ & 230 \\ & 230 \\ & \hline \end{aligned}$	1	$\begin{aligned} & 1.0 \\ & 1.0 \\ & 1.0 \\ & \hline \end{aligned}$
$\begin{aligned} & 33-80 \\ & 33-100^{6} \end{aligned}$	$\begin{gathered} 36-82 \\ 36-103^{61} \end{gathered}$	$\begin{gathered} 57-120 \\ 57-148^{61} \end{gathered}$	$\begin{gathered} 33-75 \\ 33-90^{6)} \end{gathered}$	$\begin{gathered} 36-77 \\ 36-93^{61} \end{gathered}$	$\begin{gathered} 57-120 \\ 57-148^{61} \end{gathered}$	-	-	$\begin{aligned} & 6^{5)} \\ & 6^{5)} \end{aligned}$	$\begin{aligned} & \text { KЗ-90К00 } \\ & \text { K3-115K00 } \end{aligned}$	230 230	1	$\begin{aligned} & 2.3 \\ & 2.3 \end{aligned}$

Specification: Contactors K3-...K are suitable for switching low-inductive and low loss capacitors in capacitor banks
(IEC70 and 831, VDE 0560) without and with reactors.
Capacitor switching contactors are fitted with early make contacts and damping resistors, to reduce the value of make current $<70 \times \mathrm{I}_{\mathrm{e}}$.
Operating Conditions: Capacitor switching contactors are protected against contact welding for a prospective making current of $200 \times \mathrm{I}_{\mathrm{e}}$.

1) See coil voltage range and non-standard coil voltages
2) 1 HN .. Or HA.. snap-on.
3) 2 HB .. for side mounting and 1 HN .. or HA.. snap-on.
4) Consider the max. thermal current of the contactor K3-74A: $I_{t h} 130 \mathrm{~A}$.
5) 2 HB .. on the left or right side and 4 HN .. or HA.. snap-on.
6) Consider the min. cross-section of conductor at max. load.

Technical Specifications according to IEC 947-4-1, IEC 947-5-1, EN 60947-4-1, EN 60947-5-1, VDE 0660

Type			K3-18NK	K3-24K	K3-32K	K3-50K	K3-62K	K3-74K	K3-90K	K3-115K
Max. frequency of operations z		1/h	120	120	120	120	120	80	80	80
Contact life	non reactive capacitor banks	5×10^{3}	250	150	150	150	150	120	120	120
	reactive capacitor banks	5×10^{3}	400	300	300	300	300	200	200	200
Rated operational current I_{e}	at $50^{\circ} \mathrm{C}$	A	0-18	14-28	14-36	30-48	30-72	30-108	50-115	50-144
AC6b	at $60^{\circ} \mathrm{C}$	A	0-18	14-28	14-36	30-48	30-72	30-87	50-108	50-130
Rated operational current $l_{\text {th }}$	at $50^{\circ} \mathrm{C}$	A	32	45	60	100	110	120	155	190
ACl	at $60^{\circ} \mathrm{C}$	A	32	40	55	90	100	110	145	170
Overload factor	at $50^{\circ} \mathrm{C}$	\%	78	60	67	108	53	11	35	32
acc. To EN 61921: 30 \% min.	at $60^{\circ} \mathrm{C}$	\%	78	43	53	88	39	26	34	31
Fuses gL (gG)	from/to	A	35/63	50/80	63/100	80/160	125/160	160/200	160/200	160/250

Technical Specification - Electromechanical Contactors Series LA

Capacitor Switching Contactors LA, Size 3

Contactor	Type		K3-18NK10	K3-18NKO1	K3-24K	K3-32K
Capacitor rating at rated power (Utilization category AC-6b)	$\begin{aligned} & 230 \mathrm{~V}, 50 / 60 \mathrm{~Hz} \\ & 400 \mathrm{~V}, 50 / 60 \mathrm{~Hz} \\ & 525 \mathrm{~V}, 50 / 60 \mathrm{~Hz} \\ & 690 \mathrm{~V}, 50 / 60 \mathrm{~Hz} \\ & \hline \end{aligned}$	kVAr	$0-7$		5-11	5-14
		kVAr		0-12,5	10-20	10-25
		kVAr	0-15	0-15	12-25	12-32
		kVAr	0-20	0-20	17-33	17-41
Auxiliary contact mounted			1 NO	1NC	--	--
Auxiliary contacts mountable	snap on front		$\begin{aligned} & \hline \text { 1NC/6A } \\ & \text { HAOI } \end{aligned}$	$\begin{aligned} & \hline \text { 1NC/6A } \\ & \text { HAO1 } \end{aligned}$	--	--
			$\begin{gathered} \hline \text { 1NO/3A } \\ \text { HN10 } \end{gathered}$	1NO/3A	1NO/3A	1NO/3A
				HN10	HN10	HN10
			$1 \mathrm{NC} / 3 \mathrm{~A}$HNOI	1NC/3A	1NC/3A	$1 \mathrm{NC} / 3 \mathrm{~A}$
				HNO1		
	side mounted		--	--	$\begin{gathered} \hline \mathrm{NO}+1 \mathrm{NC} / 3 \mathrm{~A} \\ \mathrm{HB} 11 \\ \hline \end{gathered}$	$\begin{gathered} \hline \mathrm{NO}+1 \mathrm{NC} / 3 \mathrm{~A} \\ \mathrm{HB} 11 \end{gathered}$
Magnetic coil operating range			--	--	--	--
Max. switching frequency		h^{-1}	120	120	120	120
Electrical endurance		operating cycles	250000	250000	150000	150000
Rated operational current $\mathrm{I}_{\text {e }}$	at $50^{\circ} \mathrm{C}$	A	0-18	0-18	14-28	14-36
	at $60^{\circ} \mathrm{C}$	A	0-18	0-18	14-28	14-36
Ambient temperature		${ }^{\circ} \mathrm{C}$	≤ 60 (90) ${ }^{11}$			
Standards			IEC 947-4-1 / EN 60947-4-1 / VDE 0660			
Short-circuit protection	fuse gl/gG	A	35-63	35-63	50-80	63-100
Conductor cross-sections						
For contactors without thermal overload relay			$\stackrel{5+8}{5+8}$			
- 1 cable per clamp	solid or stranded flexible flexible with multicore cable end	$\begin{aligned} & \mathrm{mm}^{2} \\ & \mathrm{~mm}^{2} \\ & \mathrm{~mm}^{2} \\ & \hline \end{aligned}$	$0.75-6$		$2.5-16$	
- 2 cable per clamp	solid or stranded	$\overline{\mathrm{mm}^{2}}$	$\begin{gathered} 6+(1-6) / 4+(0.75-4) \\ 2.5+(0.75-2.5) / 1.5+(0.75-1.5) \\ 6+(1.5-6) / 4+(1-4) \\ 2.5+(0.75-2.5) / 1.5+(0.75-1.5) \end{gathered}$		$\begin{gathered} 16+(2.5-6) / 10+(4-10) \\ 6+(4-6) / 4+(2.5-4) \\ 16+(2.5-6) / 10+(4-10) \\ 6+(4-6) / 4+(2.5-4) \end{gathered}$	
- Cables per clamp			2		2	
For main connector			$\begin{array}{r} 18-10 \\ 18-10 \\ \hline \end{array}$		$\begin{gathered} 16-10 \\ 14-4 \\ \hline \end{gathered}$	
- 1 cable per clamp	solid	AWG				
	flexible	AWG				
- 2 cable per clamp	solid	AWG	$\begin{aligned} & 10+(16-10) / 12+(18-12) \\ & 14+(18-16) / 16+(18-16) \end{aligned}$		$\begin{aligned} & 10+(16-10) / 12+(18-12) \\ & 14+(18-16) / 16+(18-16) \end{aligned}$	
	flexible	AWG	$\begin{aligned} & 10+(14-10) / 12+(18-12) \\ & 14+(18-14) / 16+(18-16) \\ & \hline \end{aligned}$		$4+(18-12) / 6+(18-8)$	
					$8+(18-8) / 10+(18-12)$	
- Cables per clamp			2		2	
Coil voltage						
	$0,85-1,1 \times U_{N}$		$230 \mathrm{VAC} ; 50 \mathrm{~Hz}$			
Mechanical life	AC operated $\mathrm{S} \times 10^{6}$		10			10
	DC operated $\mathrm{S} \times 10^{6}$		10			10
Short time current	10 S current	A	144			240
Power loss per pole	at $\mathrm{I}_{e} / \mathrm{AC3} 400 \mathrm{~V}$	W	0.5			1.3

[^13]Capacitor Switching Contactors LA, Size 3

1) With reduced control voltage range 0.9 up to $1.0 \times \mathrm{U}_{\mathrm{e}}$ and with reduced rated current $\mathrm{I}_{\mathrm{e}} / \mathrm{ACl}$ according to $\mathrm{I}_{\mathrm{e}} / \mathrm{AC} 3$

Technical Specification - Electromechanical Contactors Series LA

Capacitor Switching Contactors LA, Size 3

Mounted auxiliary contacts	Type		K3-18NK	K3-24K, K3-32K	$\begin{gathered} \text { K3-50К, К3-62K } \\ \text { К3-74K } \end{gathered}$	K3-90K, K3-115K	
Control circuit							
Power consumption of coils							
AC operated	inrush	VA	33-45	90-115	140-165	190-280	
	sealed	VA	7-10	9-13	13-18	2.5-5	
		W	2.6-3	2.7-4	5.4-7	2.5-5	
DC operated	inrush	W	75	140	200	190-280	
	sealed	W	2	2	6	2.5-5	
Operation range of coils							
in multiples of control voltage U_{s}	AC operated		0.85-1.1	0.85-1.1	0.85-1.1	0.85-1.1	
	DC operated		0.8-1.1	0.8-1.1	0.8-1.1	0.8-1.1	
Switching time							
At control voltage $\mathrm{U}_{\mathrm{s}} \pm 10 \%^{2 / 3}$)							
AC operated	make time	ms	8-16	10-25	12-28	20-35	
	release time	ms	5-13	8-15	8-15	35-50	
	arc duration	ms	10-15	10-15	10-15	10-15	
DC operated	make time	ms	8-12	10-20	12-23	20-35	
	release time	ms	8-13	10-15	10-18	35-50	
	arc duration	ms	10-15	10-15	10-15	10-15	
Cable cross-section							
Auxiliary connector	solid	mm^{2}	0.75-6	--	--	--	
	flexible	mm^{2}	1-4	--	--	--	
	flexible with multicore cable end	mm^{2}	0.75-4	--	--	--	
Magnet coil	solid	mm^{2}	0.75-2.5	0.75-2.5	0.75-2.5	0.75-2.5	
	flexible	mm^{2}	0.5-2.5	0.5-2.5	0.5-2.5	0.5-2.5	
	flexible with multicore cable end	mm^{2}	0.5-1.5	0.5-1.5	0.5-1.5	0.5-1.5	
Clamps per pole			2	2	2	2	
Auxiliary connector	solid	AWG	18-10	--	--	--	
	flexible	AWG	18-10	--	--	--	
Magnet coil	solid flexible	AWG	14-12	14-12	14-12	14-12	
		AWG	18-12	18-12	18-12	18-12	
Clamps per pole			2	2	2	2	
Rated insulation voltage $\mathbf{U}_{\mathbf{i}}{ }^{1 /}$	V~		690	--	--	--	
Thermal rated current lth to 690V							
Ambient temperature	$40^{\circ} \mathrm{C}$	A	16	--	--	--	
	$60^{\circ} \mathrm{C}$	A	12	--	--	--	
Utilization category AC15							
Rated operational current $I_{\text {e }}$	220-240V	A	12	--	--	--	
	$380-415 \mathrm{~V}$	A	4	--	--	--	
	440 V	A	4	--	--	--	
	500 V	A	3	--	--	--	
	660-690V	A	1	--	--	--	
Utilization category DC13							
Rated operational current $\mathrm{I}_{\text {e }}$	60 V	A	8	--	--	--	
	110 V	A	1	--	--	--	
	220 V	A	0.1	--	--	--	
Short circuit protection short-circuit current 1 kA , contact welding not accepted max. fuse size gL (gG) A 25							
Auxiliary contacts snap on or side mounted	Type		HAOI	HB11	HN10	HNO1	
			1 NC	$1 \mathrm{NO}+1 \mathrm{NC}$	1 NO	1 NC	
AC15	230 V	A	6	3	3	3	
AC15	400 V	A	3	2	2	2	
AC1	690 V	A	25	10	10	10	

[^14]
Power Contactors

Technical Specifications according to IEC 947-4-1, EN 60947-4-1, VDE 0660

Main contacts		Type	K(G)3-10	K(G)3-14	K(G)3-18	K(G)3-22	K(G)3-24	K(G)3-32	K(G)3-40	K3-50	K3-62	K3-74
Rated insulation voltage $\mathbf{U}_{\mathbf{i}}{ }^{1 /}$		VAC	690	690	690	690	690	690	690	830	830	830
Making capacity ${ }_{\text {eff }}$	$\begin{aligned} & \text { at } U_{e}= \\ & 690 \mathrm{VAC} \end{aligned}$	A	200	200	200	200	400	500	500	700	900	900
	1000VAC	A	-	-	-	-	-	-	-	-	-	-
Breaking capacity $\mathrm{I}_{\text {eff }}$	400VAC	A	180	180	200	200	380	400	400	600	800	800
K3-10 to K3-22 $\cos \varphi=0.65$	500VAC	A	150	150	180	180	300	370	370	500	700	700
K3-24 to K3-1200 $\cos \varphi=0.35$	690VAC	A	100	100	150	150	260	340	340	400	500	500
	1000VAC	A	-	-	-	-	-	-	-	-	-	-
Utilization category AC1												
Switching of resistive load Rated operational current $\mathrm{I}_{\mathrm{e}}\left(=I_{t_{t}}\right)$ at $40^{\circ} \mathrm{C}$, open												
	690 V	A	25	25	32	32	50	65	80	110	120	130
Rated operational power of three-phase resistive loads $50-60 \mathrm{~Hz}, \cos \varphi=1$	220 V	kW	9.5	9.5	12.2	12.2	19.0	24.7	30.4	41.9	45.7	49.5
	230 V	kW	9.9	9.9	12.7	12.7	19.9	25.9	31.8	43.8	47.7	51.7
	240 V	kW	10.4	10.4	13.3	13.3	20.8	27.0	33.2	45.7	49.8	54.0
$50-60 \mathrm{~Hz}, \cos \varphi=1$	380 V	kW	16.4	16.4	21.0	21.0	32.9	42.7	52.6	72.3	78.9	85.5
	400 V	kW	17.3	17.3	22.1	22.1	34.6	45.0	55.4	76.1	83.0	90.0
	415 V	kW	17.9	17.9	23.0	23.0	35.9	46.7	57.4	79.0	86.2	93.3
	440 V	kW	19.9	19.0	24.4	24.4	38.1	49.5	60.9	83.7	91.3	99.0
	500 V	kW	21.6	21.6	27.7	27.7	43.3	56.2	69.2	95.2	103.8	112.5
	660 V	kW	28.5	28.5	36.5	36.5	57.1	74.2	91.3	125.6	137.0	148.4
	690 V	kW	29.8	29.8	38.2	38.2	59.7	77.6	95.5	131.3	143.2	155.2
	1000V	kW	-	-	-	-	-	-	-	-	-	-
Rated operational current $I_{e}\left(=I_{\text {the }}\right)$ at $60^{\circ} \mathrm{C}$, enclosed	690 V	A	25	25	32	32	40	55	65	90	100	110
Rated operational power of three-phase resistive loads $50-60 \mathrm{~Hz}, \cos \varphi=1$	220 V	kW	9.5	9.5	12.2	12.2	15.2	20.9	24.7	34.3	38.1	41.9
	230 V	kW	9.9	9.9	12.7	12.7	15.9	21.9	25.9	35.8	39.8	43.8
	240 V	kW	10.4	10.4	13.3	13.3	16.6	22.8	27.0	37.4	41.5	45.7
$50-60 \mathrm{~Hz}, \cos \varphi=1$	380 V	kW	16.4	16.4	21.0	21.0	26.3	36.2	42.7	59.2	65.7	72.3
	400 V	kW	17.3	17.3	22.1	22.1	27.7	38.1	45.0	62.3	69.2	76.1
	415 V	kW	17.9	17.9	23.0	23.0	28.7	39.5	46.7	64.6	71.8	79.0
	440 V	kW	19.0	19.0	24.4	24.4	30.4	41.9	49.5	68.5	76.1	83.7
	500 V	kW	21.6	21.6	27.7	27.7	34.6	47.6	56.2	77.9	86.5	95.2
	660 V	kW	28.5	28.5	36.5	36.5	45.7	62.8	74.2	102.8	114.2	125.6
	690 V	kW	29.8	29.8	38.2	38.2	47.7	65.7	77.6	107.4	119.4	131.3
	1000V	kW	-	-	-	-	-	-	-	-	-	-
Minimum cross-section of conductor at load with $I_{e}\left(=I_{t h}\right)$		mm^{2}	4	4	6	6	10	16	25	35	50	50
Utilization category AC2 and AC3												
Switching of three-phase motors												
Rated operational current $I_{\text {e }}$ open and enclosed	220 V	A	12	15	18	22	24	30	40	50	63	74
	230 V	A	11.5	14.5	18	22	24	30	40	50	63	74
	240 V	A	11	15	18	22	24	30	40	50	63	74
	380-400V	A	10	14	18	22	24	30	40	50	63	74
	415 V	A	9	14	18	22	24	30	40	50	63	74
	440 V	A	9	14	18	22	24	30	40	50	63	74
	500 V	A	8.9	11.9	15	15	22.5	28.5	28.5	44	54	64.5
	660-690V	A	6.7	9	12	12	17.5	21	21	33	42	49
	1000V	A	-	-	-	-	-	-	-	-	-	-
Rated operational power of three-phase motors $50-60 \mathrm{~Hz}$	220-230V	kW	3	4	5	6	6	8.5	11	12.5	18.5	22
	240 V	kW	3	4	5	7	7	9	11.5	13.5	19	23
	380-400V	kW	4	5.5	7.5	11	11	15	18.5	22	30	37
	415 V	kW	4.5	6	8.5	12	12	16	20	24	33	40
	440 V	kW	4.5	6	8.5	12	12	16	20	24	33	40
	500 V	kW	5.5	7.5	10	10	15	18.5	18.5	30	37	45
	660-690V	kW	5.5	7.5	10	10	15	18.5	18.5	30	37	45
	1000V	kW	-	-	-	-	-	-	-	-	-	-

[^15]Technical Specification - Electromechanical Contactors Series LA

Power Contactors
Technical Specifications according to IEC 947-4-1, EN 60947-4-1, VDE 0660

Main Contacts		Type	K3-90	K3-115	K3-116	K3-151	K3-176	K3-210	K3-260	K3-316	K3-450	K3-550
Rated insulation voltage $\mathbf{U}^{\text {i }}{ }^{1 /}$		VAC	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000
Making capacity ${ }_{\text {leff }}$	at $U_{\mathrm{e}}=$ 690VAC	A	1100	1200	1200	1500	2000	2100	2600	3200	4500	5500
	1000VAC	A	540	600	600	720	840	1020	1200	1500	2400	3000
Breaking capacity $\mathrm{l}_{\text {eff }}$	400VAC	A	950	1100	1000	1200	1500	1600	2100	2600	4500	5500
K3-10 up to K3-22 $\cos \varphi=0.65$	500VAC	A	850	1000	1000	1200	1500	1600	2100	2600	4500	5500
K3-24 up to K3-1200 $\cos \varphi=0.35$	690VAC	A	600	600	800	1000	800	1200	1900	2300	3200	4400
	1000VAC	A	450	450	400	500	600	700	850	1000	-	-
Utilization category AC1												
Switching of resistive load Rated operational current $I_{e}\left(=I_{t_{t}}\right)$ at $40^{\circ} \mathrm{C}$, open	690 V	A	160	200	200	230	250	350	450	500	700	760
Rated operational power	220 V	kW	60	76	76	87	95	133	171	190	266	289
of three-phase resistive loads	230 V	kW	63	79	79	91	99	139	179	199	279	302
$50-60 \mathrm{~Hz}, \cos \varphi=1$	240 V	kW	66	83	83	95	103	145	187	207	291	315
	380 V	kW	105	131	131	151	164	230	296	329	460	500
	400 V	kW	110	138	138	159	173	242	311	346	485	526
	415 V	kW	115	143	143	165	179	251	323	359	503	546
	440 V	kW	121	152	152	175	190	266	342	381	533	579
	500 V	kW	138	173	173	199	216	303	389	453	606	658
	660 V	kW	182	228	228	262	285	400	514	571	800	868
	690 V	kW	191	239	239	274	298	418	537	597	836	908
	1000V	kW	221	277	216	318	346	433	546	606	692	866
Rated operational current $I_{e}\left(=I_{t_{t}}\right)$												
Rated operational power	220 V	kW	55	64	64	68	76	106	137	152	209	228
of three-phase resistive loads	230 V	kW	57	67	67	71	79	111	143	159	219	239
$50-60 \mathrm{~Hz}, \cos \varphi=1$	240 V	kW	59	70	70	74	83	116	150	166	228	249
	380 V	kW	95	111	111	118	131	184	237	263	362	395
	400 V	kW	100	117	117	124	138	193	249	277	381	415
	415 V	kW	104	122	122	129	143	201	259	287	395	431
	440 V	kW	110	129	129	137	152	213	274	304	419	457
	500 V	kW	125	147	147	155	173	242	312	346	476	519
	660 V	kW	165	194	194	205	228	320	412	457	628	685
	690 V	kW	173	202	202	215	239	334	430	478	657	717
	1000V	kW	166	187	216	277	346	388	499	554	692	866
Minimum cross-section of conductor at load with $\mathrm{I}_{\mathrm{e}}\left(=I_{t_{t}}\right)$		mm^{2}	95	120	95	95	120	240	2×150	$2 \times(30 \times 6)$	$2 \times(40 \times 5)$	$2 \times(50 \times 5)$
Utilization category AC2 and AC3												
Switching of three-phase motors												
Rated operational current $I_{\text {e }}$	220 V	A	90	115	115	150	175	210	260	315	450	550
open and enclosed	230 V	A	90	115	115	150	175	210	260	315	450	550
	240 V	A	90	115	115	150	175	210	260	315	450	550
	380-400V	A	90	115	115	150	175	210	260	315	450	550
	415 V	A	90	115	115	150	175	210	260	315	450	550
	440 V	A	90	115	115	150	175	210	260	315	450	550
	500 V	A	79	79	115	150	175	210	260	315	450	550
	660-690V	A	60	60	100	120	140	150	180	240	400	500
	1000 V	A	45	45	45	60	70	85	100	125	200	250
Rated operational power	$220-230 \mathrm{~V}$	kW	25	33	30	40	50	60	75	90	132	175
of three-phase motors	240 V	kW	27	35	35	45	55	65	80	100	140	185
$50-60 \mathrm{~Hz}$	380-400V	kW	45	55	55	75	90	110	132	160	250	300
	415 V	kW	49	63	59	80	95	115	140	180	257	315
	440 V	kW	49	63	63	85	100	125	150	190	270	335
	500 V	kW	55	55	75	90	100	132	160	210	300	375
	660-690V	kW	55	55	90	110	132	132	160	210	375	500
	1000V	kW	55	55	55	75	90	110	132	160	280	355

[^16]Data for other conditions on request.

Power Contactors

Technical Specifications according to IEC 947-4-1, EN 60947-4-1, VDE 0660

Main contacts		Type	K(G)3-10	K(G)3-14	K(G)3-18	K(G)3-22	K(G)3-24	K(G)3-32	K(G)3-40	K3-50	K3-62	K3-74
Utilization category AC4												
Switching of squirrel cage motors, inching												
Rated operational current I_{e}	220 V	A	12	15	18	18	24	30	40	50	63	63
open and enclosed	230 V	A	11.5	14,5	18	18	24	30	40	50	62	62
	240 V	A	11	14	18	18	24	32	40	50	62	62
	380-400V	A	10	14	18	18	24	32	40	50	62	62
	415 V	A	9	14	18	18	23	30	37	45	60	60
	440 V	A	9	14	18	18	23	30	37	45	55	55
	500 V	A	9	12	16	16	17,5	21	21	33	42	42
	660 V	A	7	9	9	9	17	20	20	31	40	40
	690 V	A	6,5	8,5	8,5	8,5	17	20	20	31	40	40
	1000 V	A	-	-	-	5	-	-	-	-	-	-
Rated operational power	220-230V	kW	3	4	5	5	6	8,5	11	12,5	18,5	18,5
of three-phase motors	240 V	kW	3	4	5	7,5	7	9	11,5	13,5	19	19
$50-60 \mathrm{~Hz}$	380-400V	kW	4	5,5	7,5	8,5	11	15	18,5	22	30	30
	415 V	kW	4,5	6	8,5	8,5	12	16	20	24	33	33
	440 V	kW	4,5	6	8,5	10	12	16	20	24	33	33
	500 V	kW	5,5	7,5	10	10	15	18,5	18,5	30	37	37
	660-690V	kW	5,5	7,5	10	-	15	18,5	18,5	30	37	37
	1000V	kW	-	-	-		-	-	-	-	-	-
Utilization category AC5a												
Switching of gas discharge lamps												
Rated operational current $I_{\text {e }}$ per pole at $220 / 230 \mathrm{~V}$												
Fluorescent lamps,												
uncompensated and serial compensated		A	20	20	25	25	40	52	64	88	96	104
parallel compensated		A	7	9	9	9	18	22	22	30	40	45
dual-connection		A	22,5	22,5	28	28	45	58	72	98	108	117
Metal halide lamps",												
uncompensated		A	12	15	19	19	30	39	48	66	72	78
parallel compensated		A	7	9	9	9	18	22	22	30	40	45
Mercury-vapour lamps ${ }^{\text {2 }}$,												
uncompensated		A	22,5	25	28	28	45	58	72	99	108	117
parallel compensated		A	7	9	9	9	18	22	22	30	40	45
Mixed light lamps ${ }^{3{ }^{3}}$		A	20	20	25	25	40	52	64	88	96	104
LED-Lamps												
consider the inrush current of the lamp ballast					max. lamps per pole ($\left.\mathrm{I}_{\text {nled }} \leq \mathrm{I}_{\mathrm{tr}}\right)$			=	inrush current of contactor			
and $\cos \varphi$ of the lamp									inrush current of lamp/EVG			
max inrush current of contactor		A	282	282	282	282	564	705	705	987	1269	1268
Utilization category AC5b												
Switching of incandescent lamps ${ }^{4 /}$												
Rated operational current I_{e}												
1) Metal halide lamps and sodium-vapour lamps (high- and low-pressure lamps)												
2) High-pressure lamps												
3) Blended lamps, containing a mercury high-pressure unit and a tungsten helix in a fluorescent glass bulb (daylight lamps)												
4) Current inrush approx. $16 \times \mathrm{I}_{\text {e }}$												

Technical Specification - Electromechanical Contactors Series LA

Power Contactors

Technical Specifications according to IEC 947-4-1, EN 60947-4-1, VDE 0660

1) Metal halide lamps and sodium-vapour lamps (high- and low-pressure lamps)
2) High-pressure lamps
3) Blended lamps, containing a mercury high-pressure unit and a tungsten helix in a flourescent glass bulb (daylight lamps)
4) Current inrush approx. $16 \times \mathrm{le}$

Power Contactors

Technical Specifications according to IEC 947-4-1, EN 60947-4-1, VDE 0660

Main Contacts		Type	K(G)3-10	K(G)3-14	K(G)3-18	K(G)3-22	K(G)3-24	K(G)3-32	K(G)3-40	K3-50	K3-62	K3-74
Utilization category AC6 ${ }_{\text {A }}$												
Transformer primary switching												
at inrush		n	30	30	30	30	30	30	30	30	30	30
Rated operational current $\mathrm{I}_{\text {e }}$	400 V	A	4,5	5,5	7,5	7,5	10,5	13,5	13,5	20	27	33
Rated operational power	$220-230 \mathrm{~V}$	kVA	1,8	2,2	3	3	4,2	5,4	5,4	8	10,7	13
dependent on inrush n	240 V	kVA	1,9	2,3	3,1	3,1	4,3	5,6	5,6	8,3	11,2	13,5
	380-400V	kVA	3,1	3,8	5,2	5,2	7,3	9,3	9,3	13,5	18,5	22,5
For different inrush-factors x	415-440V	kVA	3,4	4,2	5,7	5,7	8	10,2	10,2	15	20,5	25
use the following formula:	500 V	kVA	3,9	4,8	6,5	6,5	9	11,5	11,5	17	23	28
$\mathrm{Px}_{\mathrm{x}}=\mathrm{Pn}^{*}(\mathrm{n} / \mathrm{x})$	660-690V	kVA	5,4	6,5	9	9	12,5	16	16	24	32	39
Utilization category AC6b												
Switching of three-phase capacitors												
Maximum inrush current (peak value)												
as multiple k of the												
capacitor rated current		k	35	25	20	20	25	25	25	25	25	20
Rated operational current $I_{\text {e }}$	500 V	A	8	12	15,5	15,5	23	32	32	45	60	70
Rated operational power	$220-230 \mathrm{~V}$	kVAr	3	4,5	6	6	8,5	12	12	17	24	28
$(\sin \varphi \rightarrow 1)$	240 V	kVAr	3,5	5	6,5	6,5	9,5	13	13	18,5	25	29
	380-400V	kVAr	5	7,5	10	10	15	20	20	29	39	46
For different multiples x	415-440V	kVAr	5,5	8	11	11	16	22	22	32	43	50
use the following formula:	500 V	kVAr	7	10	13	13	20	26	26	39	50	58
Px $=\mathrm{Pk}^{*}(\mathrm{k} / \mathrm{x})$	660-690V	kVAr	7	10	13	13	20	26	26	40	50	58
Switching of reactive capacitor banks												
Rated operational current $I_{\text {e }}$	690 V	A	8	13	18	20	28	36	42	48	72	108^{17}
Rated operational power	220-230V	kVAr	2,9	5	7	7,5	11	14	16	20	28	33
	240 V	kVAr	3,1	5,4	7	8	11	14	17	20	28	36
	380-400V	kVAr	5	9	12,5	13	20	25	27,5	33,3	50	$75{ }^{11}$
	415-440V	kVAr	5,5	9,5	13	14	22	27	30	36	53	75^{11}
	500 V	kVAr	6	11	15	17	25	30	36	40	60	75
	660-690V	kVAr	8	15	20	22	33	41	48	55	82	100
	1000 V	kVAr	-	-	-	-	-	-	-	-	-	-
Utilization category DC1												
Switching of resistive load												
Time constant $\mathrm{L} / \mathrm{R} \leq 1 \mathrm{~ms}$												
Rated operational current $\mathrm{I}_{\text {e }}$	1 pole 24 V	A	20	25	32	32	50	65	80	110	120	130
	60 V	A	20	25	32	32	50	65	80	110	120	130
	110 V	A	6	6	6	6	10	10	10	12	12	12
	220 V	A	0,8	0,8	0,8	0,8	1,4	1,4	1,4	1,4	1,4	1,4
3 poles in series	24 V	A	20	25	32	32	50	65	80	110	120	130
	60 V	A	20	25	32	32	50	65	80	110	120	130
	110 V	A	20	25	32	32	50	65	80	110	120	130
	220 V	A	16	20	20	20	30	35	35	63	80	80
Utilization category DC3 and DC5												
Switching of shunt motors												
and series motors												
Time constant $\mathrm{L} / \mathrm{R} \leq 15 \mathrm{~ms}$												
Rated operational current $\mathrm{I}_{\text {e }}$	1 pole 24 V	A	20	25	32	32	50	65	80	110	120	130
	60 V	A	6	6	6	6	30	30	30	60	60	60
	110 V	A	1,2	1,2	1,2	1,2	1,8	1,8	1,8	1,8	1,8	1,8
	220 V	A	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,25	0,25	0,25
3 poles in series	24 V	A	20	25	32	32	50	65	80	110	120	130
	60 V	A	20	25	32	32	40	40	40	80	80	80
	110 V	A	20	20	20	20	40	40	40	80	80	80
	220 V	A	2,5	2,5	2,5	2,5	4	4	4	5	5	5

1) Consider resistive load (I_{t})

Technical Specification - Electromechanical Contactors Series LA

Power Contactors

Technical Specifications according to IEC 947-4-1, EN 60947-4-1, VDE 0660

Power Contactors

Technical Specifications according to IEC 947-4-1, EN 60947-4-1, VDE 0660

Main contacts	Type	K(G)3-10	K(G)3-14	K(G)3-18	K(G)3-22	K(G)3-24	K(G)3-32	K(G)3-40	K3-50	K3-62	K3-74
Maximum ambient temperature											
Operation open	${ }^{\circ} \mathrm{C}$					-40 to +60	$(+90)^{11}$				
enclosed	${ }^{\circ} \mathrm{C}$					-40 to	+40				
with thermal overload relay open	${ }^{\circ} \mathrm{C}$					-25 to					
enclosed	${ }^{\circ} \mathrm{C}$					-25 to	+40				
Storage	${ }^{\circ} \mathrm{C}$					-50 to	+90				
Short circuit protection											
for contactors without thermal overload relay											
Coordination-type "1" according to IEC 947-4-1											
Contact welding without hazard of persons max. fuse size $\mathrm{gL}(\mathrm{gG})$	A	63	63	63	63	100	100	100	160	160	160
Coordination-type "2" according to IEC 947-4-1											
Light contact welding accepted											
max. fuse size gl (gG)	A	25	35	35	35	50	50	50	100	125	125
Contact welding not accepted											
max. fuse size gl (gG)	A	16	16	16	16	25	35	35	50	63	63
For contactors with thermal overload relay the device with	the sm	er admissib	le backup fu	use (contacto	or or thermal	overload relay)	lay) determin	nes the fuse size.			

Cable cross-sections

[^17]Technical Specification - Electromechanical Contactors Series LA

Power Contactors

Technical Specifications according to IEC 947-4-1, EN 60947-4-1, VDE 0660

For contactors with thermal overload relay the device with the smaller admissible backup fuse (contactor or thermal overload relay) determines the fuse size.

1) 90° reduces the control voltage range to 0.9 up to $1.0 \mathrm{XU}_{\mathrm{s}}$ and reduces the rated current $\mathrm{I}_{\mathrm{e}} / \mathrm{AC} 1$ to the value of $\mathrm{I}_{e} / \mathrm{AC} 3$
2) 70° reduces the control voltage range to $1.0 \times U_{s}$ and reduces the rated current I_{e} / ACl to the value of $\mathrm{I}_{\mathrm{e}} / \mathrm{AC} 3$
3) After each 1×10^{6} operations magnetic core and built-in auxiliary contact block must be changed

- Power Contactors

Technical Specifications according to IEC 947-4-1, EN 60947-4-1, VDE 0660

1) Suitable for: earthed-neutral systems, overvoltage category I to IV, pollution degree 3 (standard-industry): $\mathrm{U}_{\text {imp }}=8 \mathrm{kV}$. Data for other conditions on request
2) Total breaking time $=$ release time + arc duration
3) Values for delay of the release time of the make contact and the make time of the break contact will be increased, if magnet coils are protected against voltage peaks (varistor, RCunit, diode-unit)
4) with built-in coil suppressor
5) for contactors KG3-A.. only.

Technical Specification - Electromechanical Contactors Series LA

Power Contactors

Technical Specifications according to IEC 947-4-1, EN 60947-4-1, VDE 0660

Auxiliary Contacts		Type	K3-90 K3-115	K3-116	K3-151	K3-176	K3-210	K3-260	K3-316	K3-450 K3-550
Rated insulation voltage $\mathrm{Ui}^{1{ }^{1 /}}$										
Thermal rated current $\mathrm{Ith}_{\text {the }}$ up to 690V		V	-		-			-		690
Ambient temperature	$40^{\circ} \mathrm{C}$	A	-		-			-		10
	$60^{\circ} \mathrm{C}$	A	-		-			-		-
Utilization category AC15 Rated operational current $I_{\text {e }}$		-	-		-			-		-
	220-240V	A	-		-			-		3
	$380-415 \mathrm{~V}$	A	-		-			-		2
	440 V	A	-		-			-		1.5
	500 V	A	-		-			-		1.5
	660-690V	A	-		-			-		1
Utilization category DC13										
Rated operational current $I_{\text {e }}$	60V	A	-		-			-		-
	110 V	A	-		-			-		1
	220 V	A	-		-			-		0.5
Short-circuit protection short-circuit current 1kA contact welding not accepted max. fuse size										
	$\mathrm{gL}(\mathrm{gG})$	A	-		-			-		10
Control circuit										
Power consumption of coils										
AC operated	inrush	VA	165-220		350			360		800-950
	sealed	VA	2.5-5		5			5		9-11
		W	2.5-5		5			5		9-11
DC operated	inrush	W	250		350			360		700-850
	sealed	W	5		5			5		8-10
DC solenoid operated (KG3)	inrush	W	-		-			-		-
	sealed	W	-		-			-		
Operation range of coils										
in multiples of control voltage U_{s}										
	AC operated		0.85-1.1		0.85-1.1			0.85-1.1		0.85-1.1
	DC operated		0.8-1.1		0.85-1.1			0.85-1.1		0.85-1.1
Switching time at control voltage $\mathrm{U}_{s} \pm 10 \%{ }^{2 / 3)}$										
AC operated	make time	ms	20-35		30-60			40-60		50-100
	release time	ms	35-50		30-80			15-45		150-200 / 500-1000 ${ }^{11}$
	arc duration	ms	10-15					-		-
DC operated double winding coil	make time	ms	20-35		30-60			40-60		-
	release time	ms	35-50		30-80			15-45		-
	arc duration	ms	10-15		-			-		-
DC solenoid operated (KG3)	make time	ms	-		-			-		-
	release time	ms	-		-			-		-
	arc duration	ms	-		-			-		-
Cable cross-sections										
Auxiliary connector	solid	mm^{2}	-		-			-		0.75-2,5
	flexible	mm^{2}	-		-			-		0.75-2,5
	flexible with multicore cable end	mm^{2}	-		-			-		-
Magnet coil	solid	mm^{2}	0.75-2.5		1-2.5			1-2.5		1-2.5
	flexible	mm^{2}	0.5-2.5		1-2.5			1-2.5		1-2.5
	flexible with	mm^{2}	0.5-1.5		-			-		-
Clamps per pole			2		2			2		2
Auxiliary connector	solid	AWG	-		-			-		16-12
	solid	AWG	-		-			-		16-12
Magnet coil	solid	AWG	14-12		16-12			16-12		16-12
	solid	AWG	18-12		16-12			16-12		16-12
Clamps per pole			2		2			2		2

Clamps per pole

1) Suitable for: earthed-neutral systems, overvoltage category I to IV, pollution degree 3 (standard-industry): $\mathrm{U}_{\text {imp }}=8 \mathrm{kV}$. Data for other conditions on request
2) Total breaking time $=$ release time + arc duration
3) Values for delay of the release time of the make contact and the make time of the break contact will be increased, if magnet coils are protected against voltage peaks (varistor, RC-unit, diode-unit)

Power Contactors

Technical Specifications according to IEC 947-4-1, EN 60947-4-1, VDE 0660

Main contacts		Type	K2-23	K2-30	K2-37	K2-45	K2-60
Rated insulation voltage $\mathbf{U}_{\mathbf{i}}{ }^{1 /}$		V~	690	690	690	690	690
Making capacity $\mathrm{l}_{\text {eff }}$	at $\mathrm{U}_{\mathrm{e}}=690 \mathrm{~V} \mathrm{AC}$	A	400	500	500	700	900
Breaking capacity $\mathrm{l}_{\text {eff }}$	400V~	A	380	400	400	600	800
K2-09 to K2-16	$\begin{aligned} & \cos \varphi=0,65 \\ & 500 \mathrm{VAC} \end{aligned}$	A	300	370	370	500	700
K2-23 to K3-1200	$\begin{aligned} & \cos \varphi=0,35 \\ & 690 \mathrm{~V} \text { AC } \end{aligned}$ 1000V~	A	260	340	340	400	500
Utilization category AC1							
Switching of resistive load							
Rated operational current $\mathrm{I}_{\mathrm{e}}\left(=l_{\mathrm{t}_{\text {l }}}\right)$							
at $40^{\circ} \mathrm{C}$, open		A	45	50	50	80	100
Rated operational power	220 V	kW	17	19	19	30	38
of three-phase resistive loads	230 V	kW	18	20	20	31,5	40
$50-60 \mathrm{~Hz}, \cos \varphi=1$	240 V	kW	18,5	20,5	20,5	33	41
	380 V	kW	29,5	33	33	52	65
	400 V	kW	31	34,5	34,5	55	69
	415 V	kW	32	36	36	57	71
	440 V	kW	34	38	38	61	76
	500 V	kW	39	43	43	69	86
	660 V	kW	51	57	57	91	114
	690 V	kW	53,5	60	60	95	119
Rated operational current $\mathrm{I}_{\mathrm{e}}\left(=I_{\text {the }}\right)$		A	35	40	40	63	80
at $60^{\circ} \mathrm{C}$, enclosed	220 V	kW	13	15	15	24	30
Rated operational power	230 V	kW	13,5	16	16	25	31,5
of three-phase resistive loads	240 V	kW	14,5	16,5	16,5	26	33
$50-60 \mathrm{~Hz}, \cos \varphi=1$	380 V	kW	23	26	26	41	52
	400 V	kW	24	27,5	27,5	43	55
	415 V	kW	25	28,5	28,5	45	57
	440 V	kW	26,5	30	30	48	61
	500 V	kW	30	34	34	54	69
	660 V	kW	40	45	45	72	91
	690 V	kW	42	48	48	75	95
Minimum cross-section of conductor at load with $I_{e}\left(=I_{t h}\right)$		mm^{2}	10	10	10	25	35
Utilization category AC2 and AC3							
Switching of three-phase motors							
Rated operational current $I_{\text {e }}$	220 V	A	23	30	37	45	63
open and enclosed	230 V	A	23	30	37	45	61
	240 V	A	23	30	37	45	60
	$380-400 \mathrm{~V}$	A	23	30	37	45	60
	415-440V	A	23	30	37	45	60
	500 V	A	23	30	30	45	55
	660 V	A	17,5	21	21	33	42
	690 V	A	17	20	20	31	40
Rated operational power	220-230V	kW	6	8,5	11	12,5	18,5
of three-phase motors	240 V	kW	7	9	11,5	13,5	19
$50-60 \mathrm{~Hz}$	380-400V	kW	11	15	18,5	22	30
	415 V	kW	12	16	20	24	33
	440 V	kW	12	16	20	24	33
	500 V	kW	15	18,5	18,5	30	37
	660-690V	kW	15	18,5	18,5	30	37

[^18]Data for other conditions on request.

Technical Specification - Electromechanical Contactors Series LA

Power Contactors

Technical Specifications according to IEC 947-4-1, EN 60947-4-1, VDE 0660

[^19]
Power Contactors

Technical Specifications according to IEC 947-4-1, EN 60947-4-1, VDE 0660

1) 90° reduces the control voltage range to 0.9 up to $1.0 \times U_{s}$ and reduces the rated current $I_{e} / A C 1$ to the value of $\mathrm{I}_{\mathrm{e}} / \mathrm{AC3}$
2) Maximum cable cross-section with prepared conductor

Technical Specification - Electromechanical Contactors Series LA

Power Contactors

Technical Specifications according to IEC 947-4-1, EN 60947-4-1, VDE 0660

Auxiliary contacts		Type	K2-23	K2-30	K2-37	K2-45	K2-60
Rated insulation voltage $\mathrm{U}_{\mathrm{i}}{ }^{1 /}$		V AC		690			-
Thermal rated current I_{th} to 690V							
Ambient temperature	$40^{\circ} \mathrm{C}$	A		16			-
	$60^{\circ} \mathrm{C}$	A		12			-
Utilization category AC15							
Rated operational current $\mathrm{I}_{\text {e }}$	220-240V	A		12			-
	380-415V	A		4			-
	440 V	A		4			-
	500 V	A		3			-
	660-690V	A		1			-
Utilization category DC13							
Rated operational current $\mathrm{I}_{\text {e }}$	60V	A		8			-
	110 V	A		1			-
	220 V	A		0,1			-
Short circuit protection							
short-circuit current 1kA,							
contact welding not accepted							
max. fuse size	$\mathrm{gL}(\mathrm{gG})$	A		-			-
For contactors with thermal overload relay the device with the smaller admissible control fuse (contactor or thermal overload relay) determines the fuse.							
Control Circuit							
Power consumption of coils							
AC operated	inrush	VA		90-115			140-165
	sealed	VA		9-13			13-18
		W		2.7-4			5.4-7
DC operated	inrush	W		140			200
with economic circuit	sealed	W		2			6
Operation range of coils							
in multiples of control voltage U_{s}	AC operated			0.85-1.1			0.85-1.1
	DC operated			0.8-1.1			0.8-1.1
Switching time at control voltage Us $\pm 10 \%{ }^{2 / 3)}$							
AC operated	make time	ms		10-25			12-28
	release time	ms		8-15			8-15
	arc duration	ms		10-15			10-15
DC operated	make time	ms		10-20			12-23
with AC magnet system	release time	ms		10-15			10-18
	arc duration	ms		10-15			10-15
Cable cross-section							
Auxiliary connector	solid	mm^{2}		-			-
	flexible	mm^{2}		-			-
	flexible with multicore cable end	mm^{2}		-			-
Magnet coil	solid	mm^{2}		0.75-2.5			0.75-2.5
	flexible	mm^{2}		0.5-2.5			0.5-2.5
	flexible with multicore cable end	mm^{2}		0.5-1.5			0.5-1.5
Clamps per pole				2			2

[^20]
Power Contactors

Contact LifeFor selection of the suitable contactor-type according to supply voltage, power rating and application (utilization category $\mathrm{AC} 1, \mathrm{AC} 3$ or AC 4) use contact life characteristic diagram.
For the most common supply voltages four scales of power ratings P_{n} are provided for each utilization category.
Select contactor-type according to utilization category AC3 (breaking current $I_{a}=I_{e}$) using the motor rating scales to the right, according to
utilization category AC4 (breaking current $I_{a}=6 \times I_{e}$) using the motor rating
scales to the left. ${ }^{1)}$
Select contactor-type according to utilization category AC1 (breaking
current $\left.I_{a}=I_{e} / A C 1\right)$ using the breaking current scale. ${ }^{1)}$

For contactors frequently used under AC3/AC4-mixed service conditions calculate contact life with the formula:

$$
M=\frac{\mathrm{AC} 3}{1+\frac{\% \mathrm{AC} 4}{100} \times\left(\frac{\mathrm{AC} 3}{\mathrm{AC} 4}-1\right)}
$$

$M=$ Contact life (switching cycles) for AC3/AC4-mixed operations AC3 = Contact life (switching cycles) for AC3 operations (normal switching conditions).
Breaking current $I_{a}=$ rated motor current I_{n}.
AC4 = Contact life (switching cycles) for AC4 operations (inching).
Breaking current $I_{a}=$ multiples of rated motor current I_{n}.
$\% A C 4=$ Percents of AC4-operations related to the total cycles.

1) Pay attention to the approved rated values of the selected contactor according to the national approvals

Power Contactors - Contact life

- Motor Rating (K1-09 up to K3-74)

$\mathrm{P}_{\mathrm{n}}=\mathrm{AC} 4$			
660/	500V	380/	220/
kW		400V	230 V
	kW	kW	kW
$\left[\begin{array}{l}110 \\ 90\end{array}\right.$	- 75	5 - 55	5 - 30
- 75	5-56	56 - ${ }^{15}$	
	$5{ }^{5}$	56-31	- ${ }^{-18.5}$
- 45			
- 37	${ }^{-30}$		
30	${ }^{0}{ }^{18,6}$	22-15	
- ${ }_{18,5}^{22}$	$2{ }^{2}$	$15-11$	$1{ }^{1}-7.5$
15			
		. 6	
	7,5	7,5-5,5	5
7.5	\% 5 - 5.5	. 6	$4-2,2$
- 5.5	. 5	$4-3$	3
4	4	- 2.2	2-1,1
- 3	$3-2.2$	-2 2.5	15-0,75
2,2	-2, 1.6	. 5 - 1.1	, 1 -0,55
1.5	. 5 - 1,	0, 1 -0.75	-0,37
1.1	. 1 -0.75	-0,55	
-0,75	-0,55	-0,37	
-0,55	-0,37		
-0,37			
	- ${ }^{-0,2}$		
660/	500 V	380/	220/
690 V		400 V	230 V

$\mathrm{P}_{\mathrm{n}}=\mathrm{AC3}$			
$\begin{aligned} & 660 / \\ & 690 \mathrm{~V} \end{aligned}$	500 V	380/	220/
		400 V	230 V
kW	kW	kW	kW
- 800		- 315	-200
-500	- ${ }^{-400}$	-250	- 160
- 400	- ${ }^{15} 5$	-200	- $\begin{array}{r}132 \\ \hline 10\end{array}$
315	-200	- 180	- 90
- 250		- 132	
- 200	- 160	- 110	
- 180	- $\begin{array}{r}132 \\ 110\end{array}$	- 90	- ${ }^{88}$
(1132	$2{ }^{2}$	- 75	- ${ }^{47}$
-90	0 - 75	- 56	- 30
		- 45	
	5 - ${ }^{45}$	- 30	-18,6
- 45	$5{ }^{5}$		
- 37	7 - 30	- 228	
30	22		
			-7.5
- ${ }^{18,5}$	5		5.6
			-
	$11-7.5$	- 5,5	- 3
- 7.6	5.5	- 4	4 - 2,2
	$4-3$	2.2	
	3		
	-2 ${ }^{1,5}$	- 1,1	-0,66
		-0.75	-0,37
	0, 1 -0.75	-0,65	
- 0.75	$\underline{L}^{-0,55}$	-0,3	
660/	500 V	380/	220/
690 V		400 V	230 V

Technical Specification - Electromechanical Contactors Series LA

- Power Contactors - Contact life

Breaking Current (K 1-09 up to K3-74)

1) Millions of Operations

Motor Rating (K3-90 up to K3-550)

- Power Contactors - Contact life

Breaking Current (K3-90 up to K3-550)

[^21]Technical Specification - Electromechanical Contactors Series LA

Accessories - Auxiliary Contacts and Latch

Technical Specifications according to IEC 947-5-1, EN 60947-5-1, VDE 0660

Type			HN	HTN	HA	HB	HKT/HKA	HKF	K2-L ${ }^{2)}$
Rated insulation voltage $\mathrm{U}_{\mathbf{i}}{ }^{1 /}$		V AC	690	690	690	690	690	690	690
Thermal rated current $\mathrm{l}_{\text {th }}$	to 690V								
Ambient temperature	max. $40^{\circ} \mathrm{C}$	A	10	10	25	10	10	16	10
	max. $60^{\circ} \mathrm{C}$	A	6	6	20	6	-	-	6
Frequency of operations z		1/h	3000	-	3000	3000	-	-	3000
Mechanical life		5×10^{6}	10	10	10	10	-	-	10
Power loss per pole at $\mathrm{I}_{\mathrm{e}} / \mathrm{ACl}$		W	0.5	0.5	1.5	0.4	-	-	-
Utilization category AC15									
Rated operational	220-240V	A	3	3	6	3	3	3	3
current le	380-400V	A	2	2	3	2	2	2	2
	440 V	A	1,6	1,6	2	1,6	1,5	1,5	1,6
	500 V	A	1,2	1,2	2	1,2	1,5	1,5	1
	660-690V	A	0,6	0,6	1	0,6	1	1	0,5
Utilization category DC13									
Rated operational	60 V	A	2	2	8	2	-	-	2
current le	110 V	A	0.4	0.4	1	0.4	0.5	0.5	0.4
	220 V	A	0.1	0.1	0.1	0.1	0.5	0.2	0.1
Short circuit protection									
short-circuit current 1 kA ,									
contact welding not accepted max. fuse size	$\mathrm{gL}(\mathrm{gG})$	A	20	20	25	20	10	10	10

For contactors with thermal overload relay or auxiliary contacts the device with the smaller admissible control fuse (contactor or thermal overload relay) determines the fuse size.

Cable cross-sections

	solid or stranded	mm^{2}
flexible	mm^{2}	$0.75-2.5$
	flexible with multicore cable end	mm^{2}
solid	AWG	$0.75-2.5$
	flexible	AWG

Cables per clamp
2

1) Suitable for: earthed-neutral systems, overvoltage category I to IV, pollution degree 3 (standard-industry): $\mathrm{U}_{\text {imp }}=8 \mathrm{kV}$. Data for other conditions on request.
2) Command duration $\mathrm{min} .30 \mathrm{~ms}, 10 \%$ duty cycle, max. 30 eec.

Direct on Line Starters D.O.L. with Selector Switch

D.O.L. Starters with Selector Switch

4	K3-10ND10	2	$\mathrm{U} 12 / 16 \mathrm{~K} 3$	IP65	$\varnothing 20.5 \mathrm{~mm}$	$\mathrm{P} 1 \mathrm{~W} 10 \ldots$	1	0,6
7.5	K3-18ND10	2	$\mathrm{U} 12 / 16 \mathrm{~K} 3$	IP 65	$\varnothing 20.5 \mathrm{~mm}$	$\mathrm{P} 1 \mathrm{~W} 18 \ldots$	1	0,6
11	K3-22ND10	2	$\mathrm{U} 12 / 16 \mathrm{~K} 3$	IP 65	$\varnothing 20.5 \mathrm{~mm}$	$\mathrm{P} 1 \mathrm{~W} 22 \ldots$	1	0,6

Enclosures for Contactors

Suitable for contactor	Protection Degree	Conduit Entries Top	Bottom	Type	Pack pcs.	Weight $\mathrm{kg} / \mathrm{pc}$.
K3-07. to K3-22.. K3-24.. ${ }^{1 /}$ to K3-40..	IP65	$2 \times \varnothing 20.5 \mathrm{~mm}$	$2 \times \varnothing 20.5 \mathrm{~mm}$	P1	1	0,35

Enclosures for D.O.L. Starters with reset button

Suitable for contactor	Protection Degree	Conduit Entries Top	Bottom	Type	Pack pcs.	Weight $\mathrm{kg} / \mathrm{pc}$.
K3-10.. to K3-22.. + U12/16.. K3	IP65	$2 \times \varnothing 20.5 \mathrm{~mm}$	$2 \times \varnothing 20.5 \mathrm{~mm}$	P1R	1	0,35

Contactors for Photovoltaic Plants, 1000V DC
Rated Operational Current

DC1 $600 V$	1000 V	1200V	Additional Aux. Contacts		Type		Pack pcs.	Weight $\mathrm{kg} / \mathrm{pc}$
30 A	30 A	-	2 HKAl1	K3PV-30	230	$220-230 \mathrm{~V} 50 \mathrm{~Hz}$, 240 V 60 Hz	1	0.9

Contactors for DC-Switching for PV-installations, as remote controlled fire protection defeat device

In most Photovoltaic-installations, the switch disconnectors according to IEC 60364-7-712 are integrated in the DC/AC-inverter. So the wires between solar-panels and inverter are continuously under voltage.
According to ÖVE-R 11-1: 2013, Photovoltaic installations must have a fire protection defeat device.
For this purpose, contactors for DC switching, used as a fire protection defeat device, can switch off the Photovoltaic-installation with a remote controlled fire brigade Emergency-Stop button.

1) Other coil voltages from 24 to 600 VAC , on request

- Technical Specifications

2) $>40^{\circ}$... $1 \% / \mathrm{C}^{\circ}$ de-rating (e.g.. at $60^{\circ} \mathrm{C} 20 \%$ de-rating)

Technical Specification - Electromechanical Contactors Series ALEA LS

General Information - Main Contacts for Contactors LSD, LSR, LSS and LSU

Endurance of the Main Contacts
The characteristic curves show the contact endurance of the contactors when switching resistive and inductive AC loads ($\mathrm{AC}-1 / \mathrm{AC}-3$) depending on the breaking current and rated operational voltage. It is assumed that the operating mechanisms are switched randomly, i.e. not synchronized with the phase angle of the supply system.
The rated operational current le complies with utilization category AC-4 (breaking six times the rated operational current) and is intended for a contact endurance of at least 200000 operating cycles.
If a shorter endurance is sufficient, the rated operational current I e/AC-4 can be increased. If the contacts are used for mixed operation, i.e. normal switching (breaking the rated operational current according to utilization category AC-3) in combination with intermittent inching (breaking several times the rated operational current according to utilization category $\mathrm{AC}-4)$, the contact endurance can be calculated approximately from the following equation:

A

$$
1+\frac{C}{100}\left(\frac{A}{B}-1\right)
$$

Characters in the equation:
X Contact endurance for mixed operation in operating cycles
A Contact endurance for normal operation $\left(\mathrm{I}_{\mathrm{a}}=\mathrm{I}_{\mathrm{e}}\right)$ in operating cycles
B Contact endurance for inching ($I_{a}=$ multiple of I_{e}) in operating cycles
C Inching operations as a percentage of total switching operations
Diagram: Endurance of the Main Contacts - Size 00/0

General Information - Main Contacts for Contactors LSD, LSR, LSS and LSU
Diagram: Endurance of the Main Contacts - Size 2/3/6-12

A) Size 2

1) Operating cycles
$P_{N}=$ Rated power for squirrel-cage motors at 400V
$I_{a}=$ Breaking current
$I_{\mathrm{e}}=$ Rated operational current
C) Size 6 (LSD6)

Size 10 (LSDE)
Size 12 (LSDG)

Electromagnetic compatibility (EMC)

The contactors with solid-state operating mechanism comply with the requirements for operation in industrial installations.

• Interference immunity		
Burst	IEC 61000-4-4	4 kW
Surge	IEC 61000-4-5	4 kW
Electrostatic discharge	IEC 61000-4-2	$8 / 15 \mathrm{~kW}$
Electromagnetic field	IEC 61000-4-3	$10 \mathrm{~V} / \mathrm{m}$
Emitted interference		A
Limited value class	EN 55011	

Technical Specification - Electromechanical Contactors Series ALEA LS

General Information - Auxiliary Contacts for Contactors LSD, LSR, LSS and LSU

Rated Data of the Auxiliary Contacts
ALEA controls are climate-proof and are suitable and tested for use worldwide.
If the devices are used in ambient conditions which deviate from common industrial conditions (EN60721-3-3 "Stationary Use, Weather-Protected"), the manufacturer must be consulted about possible restrictions with regard to the reliability and endurance of the device and possible protective measures.

1) Attachable auxiliary contact blocks for size $S 00$ and laterally mountable auxiliary contact blocks for 0 to 12: 6A
2) Up to 500 V switching capacity for laterally mountable auxiliary contact blocks.

Endurance of the Auxiliary Contacts

It is assumed that the operating mechanisms are switched randomly, i.e. not synchronized with the phase angle of the supply system.
The contact endurance is mainly dependent on the breaking current.
The characteristic curves apply to

- Integrated auxiliary contacts for LSS/LSD
- LSZ..... auxiliary contact blocks for contactor sizes 00 to 12 .

General Information - Auxiliary Contacts for Contactors LSD, LSR, LSS and LSU
Diagram: Endurance of the Auxiliary Contacts

Legend:
$\mathrm{I}_{\mathrm{a}}=$ Breaking current
$I_{e}=$ Rated operational current

1) Million operating cycles
2) Basic unit
3) Basic unit with auxiliary block snapped on

Technical Specification - Electromechanical Contactors Series ALEA LS

- Contactors LSDD, LSSD and LSUD
- General Data - Contactors LSDD, LSSD

Type
Size
Allgemeine Daten

Miniature circuit breakers up to 230 V with C characteristic Short-circuit current $I_{k}<400 \mathrm{~A}$

1) See "Endurance of the main contacts"
2) See "Conductor cross-sections"
3) Test conditions according to IEC 60947-4-1

- Contactors LSDD, LSSD and LSUD

■ Control-Contactors LSDD, LSSD, LSUD

Type Size			LSDD, LSUD 00	$\begin{gathered} \text { LSSD } \\ 00 \end{gathered}$
Magnetic coil operating range				
AC operation		$\begin{aligned} & 50 \mathrm{~Hz} \\ & 60 \mathrm{~Hz} \end{aligned}$	$\begin{gathered} 0.8 \ldots 1.1 \times U_{s} \\ 0.85 \ldots 1.1 \times U_{s} \end{gathered}$	
- DC operation		up to 50 Hz up to 60 Hz	$\begin{gathered} 0.8 \ldots 1.1 \times U_{5} \\ 0.85 \ldots 1.1 \times U_{5} \end{gathered}$	$0.7 \ldots 1.25 \times \mathrm{U}_{5}\left(\mathrm{U}_{5}=17-13 \mathrm{VDC}\right)$
Power consumption of the magnetic coils (when coil is cold and $1.0 \times \mathrm{U}_{\mathrm{s}}$)				
Standard version	- Closing	VA	27/24.3	
	- P.f.		0.8/0.75	
	- Closed	VA	4.4/3.4	
	- P.f.		0.27/0.27	
- AC operation, 50 Hz, USA/Canada	- Closing	VA	26.4	
	- P.f. for closing		0.81	
	- Closed	VA	4.7	
	- P.f. for closed		0.26	
- AC operation, 60 Hz, USA/Canada	- Closing	VA	31.7	
	- P.f. for closing		0.77	
	- Closed	VA	5.1	
	- P.f. for closed		0.27	
- DC operation	Closing = Closed	W	3.3	2,3
Permissible residual current of the electronics (with 0 signal)				
	- AC operation		$<3 \mathrm{~mA} \times\left(230 \mathrm{~V} / \mathrm{U}_{5}\right)$	
	- DC operation		$<10 \mathrm{~mA} \times\left(24 \mathrm{~V} / \mathrm{U}_{5}\right)$	
Operating times ${ }^{1 /}$				
Total break time $=$ Opening delay + Arcing time				
- AC operation at $0.8 \ldots 1.1 \times \mathrm{U}_{\text {s }}$	Closing delay	ms	8... 35	
	Opening delay	ms	4 ... 30	
- DC operation at $0.85 \ldots 1.1 \times \mathrm{U}_{5}$	Closing delay	ms	$25 \ldots 100$	
	Opening delay	ms	$7 \ldots 10$	
- Arcing time		ms	$10 \ldots 15$	
Operating times for $1.0 \times \mathrm{U}^{11}$				
- AC operation	Closing delay	ms	$10 . .25$	
	Opening delay	ms	5 ... 30	
- DC operation	Closing delay	ms	$30 . .50$	
	Opening delay	ms	$7 \ldots 9$	

1) The OFF-delay of the NO contact and the ON-delay of the NC contact are increased if the contactor
coils are attenuated against voltage peaks (noise suppression diode 6 to 10 times; diode assemblies 2 to 6 times, varistor +2 to 5 ms).
Main Circuit-Contactors LSDD, LSSD, LSUD

Type Size			$\begin{gathered} \text { LSDD07, LSSD07 } \\ 00 \end{gathered}$	$\begin{gathered} \text { LSDD09, LSSD09 } \\ 00 \end{gathered}$	LSDD 12, LSSD 12, LSUD 12 00
AC capacity					
Utilization category AC-1Switching resistive loads					
Rated operational current $I_{\text {e }}$	at $40^{\circ} \mathrm{C}$ up to 690 V at $60^{\circ} \mathrm{C}$ up to 690 V	$\begin{aligned} & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & 18 \\ & 16 \\ & \hline \end{aligned}$	$\begin{aligned} & 22 \\ & 20 \\ & \hline \end{aligned}$	$\begin{aligned} & 22 \\ & 20 \\ & \hline \end{aligned}$
Rated power for AC loads ${ }^{1 /}$	230 V	kW	6.3	7.5	7.5
P.f. $=0.95$ (at $60^{\circ} \mathrm{C}$)	400 V	kW	11	13	13
	500 V	kW	13.8	17	17
	690 V	kW	19	22	22
Minimum conductor cross-section	at $40^{\circ} \mathrm{C}$	mm^{2}	2.5	2.5	2.5
for loads with $\mathrm{I}_{\text {e }}$	at $60^{\circ} \mathrm{C}$	mm^{2}	2.5	2.5	2.5
Utilization categories AC-2 and AC-3					
Rated operational currents $I_{\text {e }}$	up to 400 V	A	7	9	12
	440 V	A	7	9	11
	500 V	A	5	6.5	9
	690 V	A	4	5.2	6.3
Rated power for slipring or squirrel cage	at 230 V	kW	2.2	3	3
motors at 50 and 60 Hz	400 V	kW	3	4	5.5
	500 V	kW	3.5	4.5	5.5
	690 V	kW	4	5.5	5.5
Thermal load capacity	10 s current ${ }^{2}$	A	56	72	96

[^22]Technical Specification－Electromechanical Contactors Series ALEA LS

Contactors LSDD，LSSD and LSUD
Main Circuit－Contactors LSDD，LSSD，LSUD

Type Size			$\begin{gathered} \text { LSDD07, LSSDO7 } \\ 00 \end{gathered}$	LSDD09，LSSD09 00	$\begin{gathered} \text { LSDD 12, LSSD } 12 \\ 00 \\ \hline \end{gathered}$
AC capacity					
Power loss per conducting path	at $\mathrm{I}_{\mathrm{e}} / \mathrm{AC}-3$	W	0，42	0，7	1，24
Utilization category AC－4（at $\left.\mathrm{I}_{\mathrm{a}}=6 \times \mathrm{I}_{\mathrm{e}}\right)^{1 /}$					
－Rated operational current $\mathrm{I}_{\text {e }}$	up to 400 V	A	6，5	8，5	8，5
－Rated power for squirrel－cage motors with 50 and 60 Hz	up to 400 V	kW	3	4	4
－The following applies to a contact endurance of about 200000 operating cycles：					
－Rated operational currents $\mathrm{I}_{\text {e }}$	up to 400 V	A	2，6	4，1	4，1
	690 V	A	1，8	3，3	3，3
－Rated power for squirrel－cage motors with 50 and 60 Hz	at 230 V	kW	0，67	1，1	1，1
	400 V	kW	1，15	2	2
	500 V	kW	1，45	2	2
	690V	kW	1，15	2，5	2，5
Utilization category AC－5a					
Switching gas discharge lamps，inductive ballast per main current path at 230V －Uncorrected，rated power per lamp／rated operational current per lamp					
	L 18W／0．37A	Units	54	59	59
	L36W／0．43A	Units	46	51	51
	L58W／0．67A	Units	29	32	32
	L 80W／0．79A	Units	25	27	27
－DUO switching（two－lamp）					
	L18W／0．22A	Units	90 （§ 2×90 lamps）	100 （ $2 \times 100 \mathrm{lamps}$ ）	100 （\＃2 2×100 lamps）
	L36W／0．42A	Units	47 （§ 2×47 lamps）	52 （仓2 2×52 lamps）	52 （\＃2 $\times 52$ lamps）
	L58W／0．63A	Units	$31(\triangleq 2 \times 31 \mathrm{lamps})$	34 （仓2 $\times 34$ lamps）	34 （\＃2 2×34 lamps）
	L 80W／0．87A	Units	22 （今2 22 lamps）	25 （仓2 2×25 lamps）	25 （仓2 2×25 lamps）

Switching gas discharge lamps with correction per main current path at 230 V
－Shunt compensation with inductive ballast，rated power per lamp／capacitance／rated operational current per lamp

[^23]- Contactors LSDD, LSSD and LSUD

Main Circuit-Contactors LSDD, LSSD, LSUD

Type Size			LSDD07, LSSD07 00	LSDD09, LSSD09 00	$\begin{gathered} \text { LSDD 12, LSSD } 12 \\ 00 \end{gathered}$
DC capacity					
Utilization category DC-1 Switching resistive loads ($\mathrm{L} / \mathrm{R} \leq 1 \mathrm{~ms}$) - Rated operational current $\mathrm{I}_{\mathrm{e}}\left(\right.$ at $\left.60^{\circ} \mathrm{C}\right)$					
- 1 conducting path	up to 24 V	A	15	20	
	60 V	A	15	20	
	110 V	A	1.5	2.1	
	220 V	A	0.6	0.8	
	440 V	A	0.42	0.6	
	600 V	A	0.42	0.6	
- 2 conducting paths in series	up to 24 V	A	15	20	
	60 V	A	15	20	
	110 V	A	8.4	12	
	220 V	A	1.2	1.6	
	440 V	A	1.6	0.8	
	600 V	A	0.5	0.7	
- 3 conducting paths in series	up to 24 V	A	15	20	
	60 V	A	15	20	
	110 V	A	15	20	
	220 V	A	15	20	
	440 V	A	0.9	1.3	
	600 V	A	0.7	1	
Utilization category DC-3 und DC-5, Shunt-wound and series-wound motors (L/R $\leq 15 \mathrm{~ms}$) - Rated operational current $\mathrm{I}_{\mathrm{e}}\left(\right.$ at $\left.60^{\circ} \mathrm{C}\right)$					
- 1 conducting path	up to 24 V	A	15	20	
	60 V	A	0.35	0.5	
	110 V	A	0.1	0.15	
	220 V	A	--	--	
	440 V	A	--	--	
	600 V	A	--	--	
- 2 conducting paths in series	up to 24 V	A	15	20	
	60 V	A	3.5	5	
	110 V	A	0.25	0.35	
	220 V	A	--	--	
	440 V	A	--	--	
	600 V	A	--	--	
- 3 conducting paths in series	up to 24V	A	15	20	
	60 V	A	15	20	
	110 V	A	15	20	
	220 V	A	1.2	1.5	
	440 V	A	0.14	0.2	
	600 V	A	0.14	0.2	
Switching frequency z in operating cycles/hour					
- Contactors without overload relay	No-load switching frequency AC	h^{-1}		1000	
	No-load switching frequency DC	h^{-1}		1000	
Dependence of the switching	Rated operation				
frequency z^{\prime} on the operational current	AC-1 (AC/DC)	h^{-1}			
I^{\prime} and operational voltage U^{\prime} :	AC-2 (AC/DC)	h^{-1}		1000750	
$z^{\prime}=z \cdot\left(l_{e} / 1\right) \cdot\left(400 \mathrm{~V} / \mathrm{U}^{\prime}\right)^{1,5} \cdot 1 / \mathrm{h}$	AC-3 (AC/DC)	h^{-1}		750	
	AC-4 (AC/DC)	h^{-1}		250	
- Contactors with overload relays (mean value)		h^{-1}		15	

Conductor Cross-Sections-Contactors LSDD, LSSD, LSUD

(1 or 2 conductors can be connected)	Main and auxiliary conductors; coil connections:		Screw terminals
For standard screwdriver size 2 and Pozidriv 2	- Solid	mm^{2}	$2 \times(0.5 \ldots 1.5)^{11} ; 2 \times(0.75 \ldots 2.5)^{1)}$ acc. to IEC $60947 ;$ $\max .2 \times(1 \ldots 4)$
	- Finely stranded with end sleeve	mm^{2}	$2 \times(0.5 \text {... } 1.5)^{11} ; 2 \times(0.75 \text {... } 2.5)^{11}$
	- Solid or stranded, AWG cables	AWG	$2 \times(20 . . .16)^{\prime \prime} ; 2 \times(18 . . .14)^{\prime \prime} ; 1 \times 12$
	- Terminal screw		M3
	- fightening torque	Nm	0.8 ... 1.2 (7 ... $10.3 \mathrm{lb} . \mathrm{in}$)
(1 or 2 conductors can be connected)	Main and auxiliary conductors; coil connections:		Cage Clamp terminals (on request)
	- Solid	mm^{2}	$2 \times(0.25$... 2.5)
	- Finely stranded with end sleeve	mm^{2}	$2 \times(0.25 \ldots 1.5)$
	- Finely stranded without end sleeve	mm^{2}	$2 \times(0.25 \ldots 2.5)$
	- AWG cables, solid or stranded	AWG	$2 \times(24 . . .14)$

[^24]Technical Specification - Electromechanical Contactors Series ALEA LS

Contactors LSDO, LSSO and LSUO
■ General Data - Contactors LSDO, LSSD, LSUD

1) See "Endurance of the main contacts"
2) See "Conductor cross-sections"
3) Test conditions according to IEC 60947-4-1

- Contactors LSDO, LSSO and LSUO
- Control-Contactors LSDO, LSSO, LSUO

$\begin{aligned} & \text { Type } \\ & \text { Size } \end{aligned}$			LSDO, LSUO 0	$\begin{gathered} \text { LSSO } \\ 0 \end{gathered}$
Magnetic coil operating range	AC/DC		$0.8 \ldots 1.1 \times \mathrm{U}_{5}$	0.7 ... $1.25 \times \mathrm{U}_{\mathrm{s}} / \mathrm{U}_{\mathrm{s}}=17-30 \mathrm{VDC}$
Power consumption of the magnetic coils (when coil is cold and $1.0 \times \mathrm{U}_{5}$)				
- AC operation, $50 / 60 \mathrm{~Hz}$	- Closing	VA		
Standard version	- P.f.		0.82	
	- Closed	VA	7,8	
	- P.f.		0.24	
- AC operation, $50 / 60 \mathrm{~Hz}$	- Closing	VA	64/63	
Standard version	- P.f. for closing		0.72/0.74	
	- Closed	VA	8.4/6.8	
	- P.f. for closed		0.24/0.28	
AC operation, 50 Hz , USA/Canada	- Closing	VA	61	
	- P.f. for closing		0,82	
	- Closed	VA	7,8	
	- P.f. for closed		0,24	
- AC operation, 60 Hz , USA/Canada	- Closing	VA	69	
	- P.f. for closing		0,76	
	- Closed	VA	7,5	
	- P.f. for closed		0,28	
- DC operation	Closing $=$ Closed	W	5,4	4,2
Permissible residual current of the electronics (with 0 signal)				
	- AC operation	mA	$<6 \mathrm{~mA} \times\left(230 \mathrm{~V} / \mathrm{U}_{5}\right)$	
	- DC operation	mA	$<16 \mathrm{~mA} \times\left(24 \mathrm{~V} / \mathrm{U}_{5}\right)$	
Operating times ${ }^{1 /}$				
Total break time $=$ Opening delay + Arcing time				
- AC operation at $0.8 \ldots \mathrm{I..1} \times \mathrm{U}_{\text {s }}$	Closing delay	ms	8 ... 44	
	Opening delay	ms	4 ... 20	
- DC operation at $0.85 \ldots 1.1 \times \mathrm{U}_{\text {s }}$	Closing delay	ms	50 ... 170	
	Opening delay	ms	13.5 ... 15.5	
- Arcing time		ms	10	
Operating times for $1.0 \times \mathrm{U}^{11}$				
- AC operation	Closing delay	ms	$10 . .17$	
	Opening delay	ms	4 ... 20	
- DC operation	Closing delay	ms	55 ... 85	
	Opening delay	ms	$14 . . .15 .5$	

1) The OFF-delay of the NO contact and the ON-delay of the NC contact are increased if the contactor coils are attenuated against voltage peaks (varistor +2 ms to 5 ms , diode assembly: 2 to 6 times).

- Main Circuit Contactors LSDO, LSSO, LSUO

TypeSize			LSD009	LSDO12, LSSO12 0	LSDO17, LSSO17 0	LSD025, LSSO25 LSUO25 0
AC capacity						
Utilization category AC-1						
Switching resistive loads						
Rated operational current $\mathrm{I}_{\text {e }}$	at $40^{\circ} \mathrm{C}$ up to 690 V	A	40			
	at $60^{\circ} \mathrm{C}$ up to 690 V	A	35			
Rated power for AC loads ${ }^{1 /}$	230 V	kW	13,3			
P.f. $=0.95\left(\mathrm{at} 60^{\circ} \mathrm{C}\right)$	400 V	kW	23			
	500 V	kW	29			
	690 V	kW	40			
Minimum conductor cross-section	at $40^{\circ} \mathrm{C}$	mm^{2}	10			
for loads with $\mathrm{I}_{\text {e }}$	at $60^{\circ} \mathrm{C}$	mm^{2}	10			
Utilization categories AC-2 and AC-3						
Rated operational currents $I_{\text {e }}$	up to 400 V	A	9	12	17	25
	440 V	A	9	12	17	22
	500 V	A	6,5	12	17	18
	690 V	A	5,2	9	13	13
Rated power for slipring or squirrel cage	at 110 V	kW	1,1	1,5	2,2	3
motors at 50 and 60 Hz	230 V	kW	3	3	4	5,5
	400 V	kW	4	5,5	7,5	11
	500 V	kW	4,5	7,5	10	11
	$660 \mathrm{~V} / 690 \mathrm{~V}$	kW	5,5	7,5	11	11
Thermal load capacity	10 s current ${ }^{2}$	A	80	110	150	200
Power loss per conducting path	at $\mathrm{l}_{\mathrm{e}} / \mathrm{AC}-3$	W	0,4	0,5	0,9	1,6

1) Industrial furnaces and electric heaters with resistance heating, etc. (increased power consumption on heating up has been taken into account).
2) According to IEC 60947-4-1. For rated values for various start-up conditions see Protection Equipment: Thermal Overload Relays.

Technical Specification - Electromechanical Contactors Series ALEA LS

- Contactors LSDO, LSSO and LSUO
- Main Circuit Contactors LSDO, LSSO, LSUO

Type Size			LSD009 0	LSDO12, LSSO12 0	LSDO17, LSSO17 0	LSDO25, LSSO25 LSUO25 0
AC capacity						
Power loss per conducting path	at $\mathrm{I}_{\mathrm{e}} /$ AC- 3					
Utilization category AC-4 (at $\left.\mathrm{I}_{\mathrm{a}}=6 \times \mathrm{I}_{\mathrm{e}}\right)^{1 /}$						
- Rated operational current $l_{\text {e }}$	up to 400 V	A	8,5	12,5	15,5	15,5
- Rated power for squirrel-cage motors with 50 and 60 Hz	up to 400V	kW	4	5,5	7,5	7,5
The following applies to a contact endurance of about 200000 operating cycles:						
- Rated operational currents II	up to 400V	A	4,1	5,5	7,7	9
	690 V	A	3,3	5,5	7,7	9
- Rated power for squirrel-cage motors with 50 and 60 Hz	at 110 V	kW	0,5	0,73	1	1,2
	230	kW	1,1	1,5	2	2,5
	400V	kW	2	2,6	3,5	4,4
	500 V	kW	2	3,3	4,6	5,6
	690 V	kW	2,5	4,6	6	7,7

Utilization category AC-5a
Switching gas discharge lamps, inductive
ballast per main current path at 230 V

Switching gas discharge lamps with correction per main current path at 230V

Shunt compensation with inductive ballast, rated power per lamp/capacitance/rated operational current per lamp

For deviating inrush current factors x, the power must be recalculated as follows: $P_{x}=P_{n 30} \cdot 30 / x$
Utilization category AC-6b, switching low-inductance (low-loss, metallized dielectric) AC capacitors

Rated operational currents le	up to 400V	A	5,8	10,8
Rated power for single capacitors or	at 230 V	kVAr	2,5	4
banks of capacitors (minimum inductance	400 V	kVAr	4	7,5
of $6 \mu \mathrm{H}$ between capacitors connected in	500 V	kVAr	4	7,5
parallel) at $50 \mathrm{~Hz}, 60 \mathrm{~Hz}$	690 V	kVAr	4	7,5

1) For $\mathrm{I}_{\mathrm{e}} / \mathrm{AC}-1=35 \mathrm{~A}\left(60^{\circ} \mathrm{C}\right)$ and the corresponding minimum conductor cross-section $10 \mathrm{~mm}^{2}$.
2) Depending on the electronic ballast used, higher lamp numbers are also possible.

- Contactors LSDO, LSSO and LSUO
- Main Circuit Contactors LSDO, LSSO, LSUO

Type Size			LSD009 0	LSDO12, LSSO12 0	LSDOIT, LSSO17 0	LSDO25, LSSO25 LSU025 0
DC capacity						
Utilization category DC-1 Switching resistive loads (L/R $\leq 1 \mathrm{~ms}$)						
- Rated operational current $\mathrm{I}_{\mathrm{e}}\left(\operatorname{att} 60^{\circ} \mathrm{C}\right)$						
- 1 conducting path	up to 24 V	A		35		
	60 V	A		20		
	110 V	A		4,5		
	220 V	A		1		
	440 V	A		0,4		
	600 V	A		0,25		
- 2 conducting paths in series	up to 24 V	A		35		
	60 V	A		35		
	110 V	A		35		
	220 V	A		5		
	440 V	A		1		
	600 V	A		0,8		
- 3 conducting paths in series	up to 24 V	A		35		
	60 V	A		35		
	110 V	A		35		
	220 V	A		35		
	440 V	A		2,9		
	600 V	A		1,4		
Utilization category DC-3 und DC-5, Shunt-wound and series-wound motors ($\mathbf{L} / \mathrm{R} \leq 15 \mathrm{~ms}$) - Rated operational current $\mathrm{I}_{\mathrm{e}}\left(\right.$ at $\left.60^{\circ} \mathrm{C}\right)$						
- 1 conducting path	up to 24 V	A		20		
	60 V	A		5		
	110 V	A		2,5		
	220 V	A		1		
	440 V	A		0,09		
	600 V	A		0,06		
- 2 conducting paths in series	up to 24V	A		35		
	60 V	A		35		
	110 V	A		15		
	220 V	A		3		
	440 V	A		0,27		
	600 V	A		0,16		
- 3 conducting paths in series	up to 24V	A		35		
	60 V	A		35		
	110 V	A		35		
	220 V	A		10		
	440 V	A		0,6		
	600 V	A		0,6		
Switching frequency \mathbf{z} in operating cycles/hour						
- Contactors without overload relay	No-load switching frequency AC	h^{-1}		5000		
	No-load switching frequency DC	h^{-1}		1500		
Dependence of the switching	Rated operation			1000		
frequency z^{\prime} on the operational current	AC-1 (AC/DC)	h^{-1}				
I^{\prime} and operational voltage U^{\prime} : $z^{\prime}=z \cdot\left(I_{e} / I^{\prime}\right) \cdot\left(400 \mathrm{~V} / \mathrm{U}^{\prime}\right)^{1,5} \cdot 1 / \mathrm{h}$	AC-2 (AC/DC)	h^{-1}	1000			750
	AC-3 (AC/DC)	h^{-1}	1000			750
	AC-4 (AC/DC)	h^{-1}	300			250
- Contactors with overload relays (mean value)		h^{-1}		15		

Technical Specification - Electromechanical Contactors Series ALEA LS

Contactors LSDO, LSSO and LSUOConductor Cross-Section-Contactors LSDO, LSSO, LSUO

Type Size		LSD009, LSSO12, LSDO12, LSSOI7, LSDO17, LSSO25, LSD025, LSU025 0
Conductor cross-sections (1 or 2 conductors can be connected)		
Main conductors:		Screw terminals
Solid	mm^{2}	$2 \times(1 \ldots 2.5)^{11} ; 2 \times(2.5 \ldots 6)^{\prime \prime}$ acc. to IEC 60947 ; max. 1×10
Finely stranded with end sleeve	mm^{2}	$2 \times(1 . . .2 .5)^{11} ; 2 \times(2.5 \ldots . .6)^{11}$
AWG cables, solid	AWG	$2 \times(16 \ldots 12)$
- AWG cables, solid or stranded	AWG	$2 \times(14 \ldots 10)$
- AWG cables, stranded	AWG	1×8
- Terminal screws		M4 (Pozidriv size 2)
- fightening torque	Nm	2 ... 2.5 (18 ... $22 \mathrm{lb} . \mathrm{in}$)
Auxiliary conductors		
- Solid	mm ${ }^{2}$	$2 \times(0.5 \ldots 1.5)^{11} ; 2 \times(0.75 \ldots 2.5)^{11}$ acc. to IEC 60947 ; max. $2 \times(0.75 \ldots 4)$
Finely stranded with end sleeve	mm^{2}	$2 \times(0.5 \ldots 1.5)^{11} ; 2 \times(0.75 \ldots 2.5)^{11}$
- Solid or stranded AWG (2 x)	AWG	$2 \times(20 \ldots 16)^{11} ; 2 \times(18 \ldots 14)^{11} ; 1 \times 12$
- Terminal screws		M3
tightening torque	Nm	0.8 ... 1.2 (7 ... $10.3 \mathrm{lb} . \mathrm{in}$)
Auxiliary conductors		Cage Clamp terminals (on request)
Solid	mm^{2}	$2 \times(0.25$... 2.5)
- Finely stranded with end sleeve	mm^{2}	$2 \times(0.25 \ldots 1.5)$
- Finely stranded without end sleeve	mm^{2}	$2 \times(0.25$... 2.5$)$
- AWG cables, solid or stranded	AWG	$2 \times(24 \ldots 14)$

1) If two different conductor cross-sections are connected to one clamping point, both cross-sections must lie in the range specified. If identical cross-sections are used, this restriction does not apply.

Contactors LSD2 and LSU2

General Data - Contactors LSD2, LSU2
Type Size

short-circuit current $\mathrm{I}_{k}<400 \mathrm{~A}$
I

1) See "Endurance of the main contacts"
2) See "Conductor cross-sections" pages onward
3) According to IEC 60 947-4-1.

Technical Specification - Electromechanical Contactors Series ALEA LS

Contactors LSD2 and LSU2

- Control-Contactors LSD2, LSU2

Type			LSD232	LSD240, LSU240	LSD250
Size			2	2	2
Magnetic coil operating range AC/DC			$0.8 \ldots \mathrm{~F} .1 .1 \times \mathrm{U}_{5}$		
Power consumption of the magnetic coils (when coil is cold and $1.0 \times \mathrm{U}_{5}$)					
- AC operation, $50 / 60 \mathrm{~Hz}$	- Closing	VA	104	145	
Standard version	- P.f.		0,78	0,79	
	- Closed	VA	9,7	12,5	
	- P.f.		0,42	0,36	
- AC operation, $50 / 60 \mathrm{~Hz}$	- Closing	VA	127/113	170/155	
Standard version	- P.f. for closing	VA	0.73/0.69	0.76/0.72	
	- Closed		11.3/9.5	15/11.8	
	- P.f. for closed		0.41/0.42	0.35/0.38	
- AC operation, 50 Hz , USA/Canada	- Closing	VA	108	150	
	- P.f. for closing		0,76	0,77	
	- Closed	VA	9,6	12,5	
	- P.f. for closed		0,42	0,35	
AC operation, 60 Hz , USA/Canada	- Closing	VA	120	166	
	- P.f. for closing		0,7	0,71	
	- Closed	VA	10,1	12,6	
	- P.f. for closed		0,42	0,37	
DC operation	Closing $=$ Closed	W	13,3	13,3	
Permissible residual current of the electronics (with 0 signal)					
	- AC operation	mA	$<12 \mathrm{~mA} \times\left(230 \mathrm{~V} / \mathrm{U}_{\mathrm{s}}\right)$	$<18 \mathrm{~mA} \times\left(230 \mathrm{~V} / \mathrm{U}_{\mathrm{s}}\right)$	
	- DC operation	mA	$<38 \mathrm{~mA} \times\left(24 \mathrm{~V} / \mathrm{U}_{5}\right)$	$<38 \mathrm{~mA} \times\left(24 \mathrm{~V} / \mathrm{U}_{s}\right)$	
Operating times for ${ }^{1 /}$					
Total break time $=$ Opening delay + Arcing time					
AC operation at 0.8 ... $1.1 \times \mathrm{U}_{\text {s }}$	Closing delay	ms	$11 . . .30$	$10 . . .24$	
	Opening delay	ms	7 ... 10	7 ... 10	
- DC operation at 0.85 ... $1.1 \times \mathrm{U}_{5}$	Closing delay	ms	$50 . . .95$	60 ... 100	
	Opening delay	ms	$20 . .30$	$20 . . .25$	
- Arcing time		ms	10	10	
Operating times for $1.0 \times \mathrm{U}_{5}{ }^{11}$					
- AC operation	Closing delay	ms	$13 . . .22$	$12 . . .20$	
	Opening delay	ms	7 ... 10	7 ... 10	
- DC operation	Closing delay	ms	$60 . . .75$	$70 . . .85$	
	Opening delay	ms	$20 . . .30$	20 ... 25	

1) The OFF-delay of the NO contact and the ON-delay of the NC contact are increased if the contactor coils are attenuated against voltage peaks (varistor +2 ms to 5 ms , diode assembly: 2 to 6 times).
－Contactors LSD2 and LSU2
Main Circuit－Contactors LSD2，LSU2

Type Size			LSD232 2	LSD240，LSU240 2	LSD250 2
AC capacity					
Utilization category AC－1，Switching resistive loads					
Rated operational current $I_{\text {e }}$	at $40^{\circ} \mathrm{C}$ up to 690 V	A	50	60	60
	at $60^{\circ} \mathrm{C} \mathrm{up} \mathrm{to} 690 \mathrm{~V}$	A	45	55	55
Rated power for AC loads ${ }^{1 /}$	230 V	kW	18	22	22
P．f．$=0.95\left(\mathrm{at} 60^{\circ} \mathrm{C}\right)$	400V	kW	31	38	38
	500 V	kW	39	46	46
	690 V	kW	54	66	66
Minimum conductor cross－section for loads with $I_{\text {e }}$	at $40^{\circ} \mathrm{C}$	mm^{2}	16	16	16
	at $60^{\circ} \mathrm{C}$	mm^{2}	10	16	16
Utilization categories AC－2 and AC－3					
Rated operational currents $I_{\text {e }}$	up to 500 V	A	32	40	50
	690 V	A	20	24	24
Rated power for slipping or squirrel cage motors at 50 and 60 Hz	230 V	kW	7，5	11	15
	400 V	kW	15	18，5	22
	500 V	kW	18，5	22	30
	690 V	kW	18，5	22	22
Thermal load capacity	10 s current ${ }^{2}$	A	320	400	400
Power loss per conducting path	at $\mathrm{l}_{\mathrm{e}} / \mathrm{AC}-3$	W	1，8	2，6	5
Utilization category AC－4（at $\mathrm{I}_{\mathrm{a}}=6 \times \mathrm{I}$ ）					
－Rated operational current $I_{\text {e }}$	up to 400V	A	29	35	41
－Rated power for squirrel－cage motors with 50 and 60 Hz	up to 400 V	kW	15	18，5	22
－The following applies to a contact endurance of about 200000 operating cycles：					
－Rated operational currents I	up to 400V	A	15，6	18，5	24
	690 V	A	15，6	18，5	24
－Rated power for squirrel－cage motors with 50 and 60 Hz	230	kW	4，7	5，4	7，3
	400V	kW	8，2	9，5	12，6
	500 V	kW	9，8	11，8	15，8
	690 V	kW	13	15，5	21，8
Utilization category AC－5a，Switching gas discharge lamps，inductive ballast per main current path at 230 V					
－Uncorrected，rated power per lamp／rated operational current per lamp					
－Uncorrected	L 18W／0，37A	Units	135	162	162
	L36W／0，43A	Units	116	139	139
	L58W／0，67A	Units	74	89	89
	L80W／0，79A	Units	63	75	75
－DUO switching（two－lamp）					
	L 18W／0，22A	Units	227 （	272 （气 2×272 lamps）	272 （仓2×272 lamps）
	L36W／0，42A	Units	119 （仓2x119 lamps）	142 （气 2×142 lamps）	142 （ $\triangleq 2 \times 142 \mathrm{lamps})$
	L58W／0，63A	Units	79 （ $\triangle 2 \times 79$ lamps）	95 （§ 2×95 lamps）	95 （§ 2×95 lamps）
	L80W／0，87A	Units	57 （气 2×57 lamps）	68 （气 2×68 lamps）	68 （气 2×68 lamps）
Switching gas discharge lamps with correction per main current path at 230V					
Shunt compensation with inductive ballast，rated power per lamp／capacitance／rated operational current per lamp					
－Shunt compensation with inductive ballast	L 18W／4，5uF／0，11A	Units	78	98	123
	L $36 \mathrm{~W} / 4,5 \mu \mathrm{~F} / 0,21 \mathrm{~A}$	Units	78	98	123
	L58W／7，0 0 F／0，32A	Units	50	63	79
	L80W／7，0 ${ }^{\text {F／} / 0,49 \mathrm{~A}}$	Units	50	63	73
－With solid－state ballast ${ }^{3}$ single lamp					
	L $18 \mathrm{~W} / 6,8 \mu \mathrm{~F} / 0,10 \mathrm{~A}$	Units	224	280	350
	L36W／6，8 ${ }^{\text {L }}$／ $0,18 \mathrm{~A}$	Units	124	155	194
	L58W／10ヶF／0，29A	Units	77	96	120
	L80W／10ヶF／0，43A	Units	52	65	81
－With solid－state ballast ${ }^{3}$ two lamp					
	L 18W／10 $/$ F／0，18A	Units	124 （仓2 2×124 lamps）	$155 \triangleq 2 \times 155 \mathrm{lamps}$	194 （\＃2 $\times 194$ lamps）
	L36W／10 $/$ F／0，35A	Units	64 （\＃2 2×64 lamps）	80 （\＃2 2×80 lamps）	100 （\＃2 $\times 100 \mathrm{lamps}$ ）
	L58W／22 $\mathrm{F}^{\text {／}}$ ， 52 L A	Units	43 （仓） 2×43 lamps）	54 （仓） 2×54 lamps）	67 （ $\triangleq 2 \times 67$ lamps）
	L $80 \mathrm{~W} / 22 \mu \mathrm{~F} / 0,86 \mathrm{~A}$	Units	26 （\＃） 2×26 lamps）	32 （气 2×32 lamps）	40 （仓） $2 \times 40 \mathrm{lamps}$ ）

[^25]
Technical Specification - Electromechanical Contactors Series ALEA LS

Contactors LSD2 and LSU2

Main Circuit-Contactors LSD2, LSU2

For deviating inrush current factors x, the power must be recalculated as follows: $P_{x}=P_{n 30} \cdot 30 / x$
Utilization category AC-6b, switching low-inductance (low-loss, metallized dielectric) AC

capacitors

Rated operational currents Ie
up to 400V A
Rated power for single capacitors or

at 230 V	kVAr
400 V	kVAr
525 V	kVAr

of $6 \mu \mathrm{H}$ between capacitors connected in
parallel) at $50 \mathrm{~Hz}, 60 \mathrm{~Hz}$

1) For $\mathrm{I}_{\mathrm{e}} / \mathrm{AC}-1=35 \mathrm{~A}\left(60^{\circ} \mathrm{C}\right)$ and the corresponding minimum conductor cross-section $10 \mathrm{~mm}^{2}$.
2) Depending on the electronic ballast used, higher lamp numbers are also possible.

Contactors LSD2 and LSU2
Main Circuit-Contactors LSD2, LSU2

Type Size
DC capacity
Utilization category DC-1 Rated operational curr -1 conducting path
-2 conducting paths in series

- 3 conducting paths in series

2 conducting paths in series
-3 conducting paths in series

	, 10 V	A	5	55	
	220 V	A	25	25	5
	440 V	A	0.6	0.6	0.6
	600 V	A	0.35	0.35	0.35
Switching frequency z in operating cycles/hour					
- Contactors without overload relay	No-load switching frequency AC	h^{-1}	5000	5000	5000
	No-load switching frequency DC	h^{-1}	1500	1500	1500
Dependence of the switching frequency z^{\prime} on the operational current	Rated operation		1200	1200	1000
I^{\prime} and operational voltage U^{\prime} : $z^{\prime}=z \cdot\left(I_{e} / I^{\prime}\right) \cdot\left(400 \mathrm{~V} / \mathrm{U}^{\prime}\right)^{1,5} \cdot 1 / \mathrm{h}$	AC-2 (AC/DC)	h^{-1}	750	600	400
	AC-3 (AC/DC)	h^{-1}	1000	1000	800
	AC-4 (AC/DC)	h^{-1}	250	300	300
- Contactors with overload relays (mean value)		h^{-1}	15	15	15

Technical Specification - Electromechanical Contactors Series ALEA LS

Contactors LSD2 and LSU2Conductor Cross-Sections-Contactors LSD2, LSU2

1) If two different conductor cross-sections are connected to one clamping point, both cross-sections must lie in the range specified. If identical cross-sections are used, this restriction does not apply.

Contactors LSD3 and LSU3

- General Data - Contactors LSD3

Type
Size

Main circuit

- Fuse links gl/gG NH, DIAZED, NEOZED
acc. to IEC 60 947-4-1 /DIN EN 60 947-4-1

Type of coordination "1"	A	250	250
Type of coordination "2"	A	125	160
Weld-free"	A	63	100
	A		10
ree protection at $I_{k} \geq 1 \mathrm{kA}$)	A		10

1) See "Endurance of the main contacts"
2) See "Conductor cross-sections"
3) According to IEC 60 947-4-1

Technical Specification - Electromechanical Contactors Series ALEA LS

Contactors LSD3 and LSU3

- Control-Contactors LSD3

Type	LSD365	LSD380	LSD395
Size	3	3	3
Magnetic coiloperating range			

Magnetic coil operating range \quad AC/D
Power consumption of the magnetic coils (when coil is cold and $1.0 \times \mathrm{U}_{5}$)

- AC operation, $50 / 60 \mathrm{~Hz}$

Standard version

AC operation, $50 / 60 \mathrm{~Hz}$
Standard version

- AC operation, 50 Hz , USA/Canada
- AC operation, 60 Hz , USA/Canada

	- P.f. for closing
	- Closed
- DC operation	P.f. for closed
Closing $=$ Closed	

Permissible residual current of the electronics (with 0 signal)

	- AC operation - DC operation	mA mA		
Operating times				
Total break time $=$ Opening delay + Arcing time				
- AC operation at $0.8 \ldots 1.1 \times \mathrm{U}_{\text {s }}$	Closing delay	ms	$16 . . .57$	$17 . . .90$
	Opening delay	ms	$10 . .19$	$10 . .25$
- DC operation at 0.85 ... $1.1 \times \mathrm{U}_{\text {s }}$	Closing delay	ms	$90 . . .230$	90 ... 230
	Opening delay	ms	$14 . .20$	$14 . .20$
- Arcing time		ms	10 ... 15	10 ... 15
Operating times for $1.0 \times \mathrm{Us}^{11}$				
- AC operation	Closing delay	ms	$18 . . .34$	$18 . . .30$
	Opening delay	ms	$11 . . .18$	$11 . . .23$
- DC operation	Closing delay	ms	$100 . . .120$	$100 . . .120$
	Opening delay	ms	16... 20	$16 . . .20$

1) The OFF-delay of the NO contact and the ON-delay of the NC contact are increased if the contactor coils are attenuated against voltage peaks (varistor +2 ms to 5 ms , diode assembly: 2 to 6 fimes)

Contactors LSD3 and LSU3
Main Circuit-Contactors LSD3

Type Size			LSD365 3	LSD380 3	LSD395 3
AC capacity					
Rated operational current I_{e}	$\begin{gathered} \text { at } 40^{\circ} \mathrm{C} \text { up to } 690 \mathrm{~V} \\ 1000 \mathrm{~V} \end{gathered}$	$\begin{aligned} & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & 100 \\ & 50 \end{aligned}$	$\begin{aligned} & 120 \\ & 60 \end{aligned}$	$\begin{aligned} & 120 \\ & 70 \end{aligned}$
	$\begin{gathered} \text { at } 60^{\circ} \mathrm{C} \text { up to } 690 \mathrm{~V} \\ 1000 \mathrm{~V} \end{gathered}$	A	90 40	$\begin{gathered} 100 \\ 50 \end{gathered}$	100 60
Rated power for AC loads ${ }^{11}$	230 V	kW	34	38	38
P.f. $=0.95\left(\mathrm{at} 60^{\circ} \mathrm{C}\right)$	400 V	kW	59	66	66
	500 V	kW	74	82	82
	690 V	kW	102	114	114
	1000 V	kW	66	82	98
Minimum conductor cross-section	at $40^{\circ} \mathrm{C}$	mm^{2}	35	50	50
for loads with $I_{\text {e }}$	at $60^{\circ} \mathrm{C}$	mm^{2}	35	35	35
Utilization categories AC-2 and AC-3					
Rated operational currents $I_{\text {e }}$	up to 500 V	A	65	80	95
	690 V	A	47	58	58
	1000 V	A	25	30	30
Rated power for slipping or squirrel cage	230 V	kW	18,5	22	22
motors at 50 and 60 Hz	400 V	kW	30	37	45
	500 V	kW	37	45	55
	690V	kW	45	55	55
	1000 V	kW	30	37	37
Thermal load capacity	10 s current ${ }^{2 /}$	A	600	760	760
Power loss per conducting path	at $\mathrm{I}_{\mathrm{e}} / \mathrm{AC}-3$	W	4,6	7,7	10,8
Utilization category AC-4 (at $\left.\mathrm{I}_{\mathrm{a}}=6 \times \mathrm{I}_{\mathrm{e}}\right)^{\text {1/ }}$					
- Rated operational current $\mathrm{l}_{\text {e }}$	up to 400V	A	55	66	80
- Rated power for squirrel-cage motors with 50 and 60 Hz	up to 400 V	kW	30	37	45
- The following applies to a contact endurance of about 200000 operating cycles:					
- Rated operational currents I ${ }_{\text {e }}$	up to 400 V	A	28	34	42
	690 V	A	28	34	42
	1000 V	A	20	23	23
- Rated power for squirrel-cage motors with 50 and 60 Hz	230	kW	8,7	10,4	12
	400 V	kW	15,1	17,9	22
	500 V	kW	18,4	22,4	27
	690 V	kW	25,4	30,9	38
	1000V	kW	22	30	30

[^26]Technical Specification - Electromechanical Contactors Series ALEA LS

Contactors LSD3 and LSU3
Main Circuit-Contactors LSD3

1) Industrial furnaces and electric heaters with resistance heating, etc. (increased power consumption on heating up has been taken into account).
2) According to IEC 60947-4-1. For rated values for various start-up conditions see: Thermal Overload Relays.
3) Depending on the electronic ballast used, higher lamp numbers are also possible.

Contactors LSD3 and LSU3
Main Circuit-Contactors LSD3

Type Size			LSD365 3	LSD380 3	LSD395 3
AC capacity					
Utilization category AC-6a, switching AC transformers					
- Rated operational current $\mathrm{I}_{\text {}}$					
For inrush current $\mathrm{n}=20$	up to 400V	A	63,5	80	84,4
	up to 690V	A	47	58	58
For inrush current $\mathrm{n}=30$	up to 400V	A	42,3	56,3	56,3
	up to 690V	A	42,3	56,3	56,3
- Rated power P					
For inrush current $\mathrm{n}=20$	230 V	kVA	25,3	31,9	33,6
	400V	kVA	43,9	55,4	58
	500 V	kVA	54,9	69,3	73,1
	690 V	kVA	56,2	69,3	69,3
For inrush current $\mathrm{n}=30$	230 V	kVA	16,8	22,4	22,4
	400 V	kVA	29,3	39	39
	500 V	kVA	36,6	48,7	48,7
	690 V	kVA	50,3	67,3	67,3
For deviating inrush current factors x , the power must be recalculated as follows: $\mathrm{P}_{\mathrm{x}}=\mathrm{P}_{\mathrm{n} 30} \cdot 30 / \mathrm{x}$					
Utilization category AC-6b, switching low-inductance (low-loss, metallized dielectric) AC capacitors					
Rated operational currents Ie	up to 400V	A	57	72	
Rated power for single capacitors or	at 230 V	kvar	24	29	
banks of capacitors (minimum inductance	400 V	kvar	40	50	
of $6 \mu \mathrm{H}$ between capacitors connected inparallel) at $50 \mathrm{~Hz}, 60 \mathrm{~Hz}$	525 V	kvar	50	65	
	690 V	kvar	40	50	
DC capacity					
Utilization category DC-1 Switching resistive loads (L/R $\leq 1 \mathrm{~ms}$)					
- Rated operational current $\mathrm{l}_{\mathrm{e}}\left(\right.$ at $\left.60^{\circ} \mathrm{C}\right)$					
- 1 conducting path	up to 24 V	A	90	100	100
	60 V	A	23	60	60
	110 V	A	4,5	9	9
	220 V	A	1	2	2
	440 V	A	0,4	0,6	0,6
	600 V	A	0,26	0,4	0,4
- 2 conducting paths in series	up to 24 V	A	90	100	100
	60 V	A	90	100	100
	110 V	A	90	100	100
	220 V	A	5	10	10
	440 V	A	1	1,8	1,8
	600 V	A	0,8	1	1
- 3 conducting paths in series	up to 24 V	A	90	100	100
	60 V	A	90	100	100
	110 V	A	90	100	100
	220 V	A	70	80	80
	440 V	A	2,9	1,8	4,5
	600 V	A	1,4	1	2,6

Technical Specification - Electromechanical Contactors Series ALEA LS

Contactors LSD3 and LSU3
Main Circuit-Contactors LSD3

| Type |
| :--- | :--- | :--- | :--- | :--- |
| Size |

Contactors LSD3 and LSU3

- Conductor Cross-Sections-Contactors LSD3

Type Size			$\begin{gathered} \text { LSD3 } \\ 3 \end{gathered}$
1 or 2 conductors can be connected			
Main conductors:			Screw terminals
Front clamping point	Finely stranded with end sleeve	mm^{2}	2.5 ... 35
connected	- Finely stranded without end sleeve	mm^{2}	4 ... 50
	- Stranded	mm^{2}	2.5 ... 16
	- Solid	mm^{2}	4 ... 70
	- Ribbon cable conductors (number x width x thickness)	mm^{2}	$6 \times 9 \times 0.8$
	AWG cables, solid or stranded	AWG	10... 2/0
Rear clamping point connected	- Finely stranded with end sleeve	mm^{2}	2.5 ... 50
	- Finely stranded without end sleeve	mm^{2}	$10 . . .50$
	- Stranded	mm^{2}	2.5 ... 16
	- Solid	mm^{2}	$10 . . .70$
	- Ribbon cable conductors (number x width x thickness)	mm^{2}	$6 \times 9 \times 0.8$
	AWG cables, solid or stranded	AWG	$10 . . .2 / 0$
Both clamping points connected	- Finely stranded with end sleeve	mm^{2}	$2 \times(2.5$... 35)
	- Finely stranded without end sleeve	mm^{2}	$2 \times(4 \ldots 35)$
	- Stranded	mm^{2}	$2 \times(2.5 \ldots 16)$
	- Solid	mm^{2}	$2 \times(4 \ldots 50)$
	- Ribbon cable conductors (number x width x thickness)	mm^{2}	$2 \times(6 \times 9 \times 0.8)$
	- AWG cables, solid or stranded	AWG	$2 \times(10 \ldots 1 / 0)$
	- Terminal screw		M6 (Inbus. SW 4)
	- tightening torque	Nm	4 ... 6 (36 ... $53 \mathrm{lb} . \mathrm{in}$)
Connection for drilled copper bars 1) Without box terminal with cable lugs ${ }^{2{ }^{2}}$ (1 or 2 conductors can be connected)	Max. width	mm	10
	- Finely stranded with cable lug		$10 . . .50^{31}$
	- Stranded with cable lug		$10 . . .70^{31}$
	- AWG cables, solid or stranded		7... 1/0
	Auxiliary conductors:		
	- Solid	mm^{2}	$\begin{aligned} 2 \times(0.5 \ldots 1.5)^{4} ; & 2 \times(0.75 \ldots 2.5)^{4} \text { acc. to IEC } 60947 ; \\ & \max .2 \times(0.75 \ldots 4) \end{aligned}$
	- Finely stranded with end sleeve	mm^{2}	$2 \times(0.5 \ldots 1.5) 4) ; 2 \times(0.75$... 2.5) 4)
	- AWG cables, solid or stranded	AWG	$2 \times(20 \ldots 16)^{4} ; 2 \times(18 \ldots 14)^{4} ; 1 \times 12$
	- Terminal screw		M3
	- tightening torque	Nm	0.8 ... 1.2 (7 ... 10.3 lb.in)

Auxiliary conductors:		mm^{2}
	Cage Clamp terminals (on request)	
	•	Solid
	Finely stranded with end sleeve	mm^{2}
($0.25 \ldots 2.5)$		
	Finely stranded without end sleeve	mm^{2}

[^27]Technical Specification - Electromechanical Contactors Series ALEA LS

3) See "Electromagnetic compatibility (EMC)"
4) According to IEC 60 947-4-1

Control - Contactors LSD6

Contactors LSD6
\square
Main Circuit-Contactors LSD6

Type Size			LSD611 6	LSD615 6	LSD619 6
AC capacity					
Utilization category AC-1, Switching resistive loads					
Rated operational current $I_{\text {e }}$	at $40^{\circ} \mathrm{C}$ up to 690 V	A	160	185	215
	at $60^{\circ} \mathrm{C}$ up to 690 V	A	140	160	185
	at $60^{\circ} \mathrm{C} \mathrm{up} \mathrm{to} 1000 \mathrm{~V}$	A	80	90	100
Rated power for AC loads ${ }^{1 /}$	230 V	kW	53	60	70
P.f. $=0.95\left(\mathrm{at} 60^{\circ} \mathrm{C}\right)$	400 V	kW	92	105	121
	500 V	kW	115	131	152
	690 V	kW	159	181	210
	1000 V		131	148	165
Minimum conductor cross-section	at $40^{\circ} \mathrm{C}$	mm^{2}	70	95	95
for loads with $\mathrm{I}_{\text {e }}$	at $60^{\circ} \mathrm{C}$	mm^{2}	50	70	95
Utilization categories AC-2 and AC-3					
Rated operational currents $I_{\text {e }}$	up to 500 V	A	115	150	185
	690 V	A	115	150	170
	1000 V	A	53	65	65
Rated power for slipping or squirrel cage	230 V	kW	37	50	61
motors at 50 and 60 Hz	400 V	kW	64	84	104
	500 V	kW	81	105	132
	690 V	kW	113	146	167
	1000 V	kW	75	90	90
Thermal load capacity	10 s current ${ }^{2}$	A	1100	1300	1480
Power loss per conducting path	at $\mathrm{I}_{\mathrm{e}} / \mathrm{AC}-3$	W	7	9	13
Utilization category AC-4 (at $\left.\mathrm{I}_{\mathrm{a}}=6 \times \mathrm{I}_{\mathrm{e}}\right)^{1 /}$					
- Rated operational current $\mathrm{I}_{\text {e }}$	up to 400 V	A	97	132	160
- Rated power for squirrel-cage motors with 50 and 60 Hz	up to 400 V	kW	55	75	90
- The following applies to a contact endurance of about 200000 operating cycles:					
- Rated operational currents I	up to 400 V	A	54	68	81
	690 V	A	48	57	65
	1000 V	A	34	38	42
- Rated power for squirrel-cage motors with 50 and 60 Hz	230	kW	16	20	25
	400 V	kW	29	38	45
	500 V	kW	37	47	57
	690 V	kW	48	55	65
	1000 V	kW	49	55	60
Utilization category AC-6a, switching AC transformers					
- Rated operational current $\mathrm{l}_{\text {e }}$					
For inrush current $\mathrm{n}=20$	up to 690 V	A	115	148	148
For inrush current $\mathrm{n}=30$	up to 690 V	A	90	99	99
- Rated power P	at 230 V	KVA	45	58	58
For inrush current $\mathrm{n}=20$	400 V	KVA	79	102	102
	500 V	KVA	99	128	128
	690 V	KVA	137	176	176
	1000 V	KVA	80	98	117
For inrush current $\mathrm{n}=30$	at 230 V	KVA	35	39	39
	400 V	KVA	62	68	68
	500 V	KVA	77	85	85
	690V	KVA	107	118	118
	1000 V	KVA	80	98	117

For deviating inrush current factors x, the power must be recalculated as follows: $\mathrm{P}_{\mathrm{x}}=\mathrm{P}_{\mathrm{n} 30} \cdot 30 / \mathrm{x}$
Utilization category AC-6b, switching low-inductance (low-loss, metallized dielectric) AC capacitors
Ambient temperature $40^{\circ} \mathrm{C}$

Rated operational currents I_{e}	up to 500 V	A
Rated power for single capacitors or	at 230 V	kvar
banks of capacitors (minimum	400 V	kvar
inductance of $6 \mu \mathrm{H}$ between capacitors	500 V	kvar
connected in parallel) at $50 \mathrm{~Hz}, 60 \mathrm{~Hz}$	690 V	kvar
l) Indusial fur		

Rated power for single capacitors or at 230 V

A	105
kvar	42
kvar	72
kvar	90
kvar	72

125	145
50	58
86	100
108	125
86	100

[^28]2) According to IEC 60947-4-1

Technical Specification - Electromechanical Contactors Series ALEA LS

Contactors LSD6

Main Circuit-Contactors LSD6

Type Size
DC capacity

Utilization category DC-1 Switching resistive loads (L/R $\leq 1 \mathrm{~ms}$)

- Rated operational current $I_{e}\left(\right.$ at $\left.60^{\circ} \mathrm{C}\right)$
- 1 conducting path
- 2 conducting paths in series
- 3 conducting paths in series

up to 24 V	A	160
60 V	A	160
110 V	A	18
220 V	A	3,4
440 V	A	0,8
600 V	A	0,5
up to 24 V	A	160
60 V	A	160
110 V	A	160
220 V	A	20
440 V	A	3,2
600 V	A	1,6
up to 24 V	A	160
60 V	A	160
110 V	A	160
220 V	A	160
440 V	A	11,5
600 V	A	4

Utilization category DC-3 und DC-5, Shunt-wound and series-wound motors (L/R \leq 15ms)

- Rated operational current $I_{e}\left(\right.$ at $\left.60^{\circ} \mathrm{C}\right)$
- 1 conducting path

	600 V	A		0,12	
- 2 conducting paths in series	up to 24 V	A	160		
	60 V	A	160		
	110 V	A	160		
	220 V	A	2,5		
	440 V	A	0,65		
	600 V	A	0,37		
- 3 conducting paths in series	up to 24 V	A	160		
	60 V	A	160		
	110 V	A	160		
	220 V	A	160		
	440 V	A	1,4		
	600 V	A	0,75		
Switching frequency \mathbf{z} in operating cycles/hour					
Contactors without overload relay	No-load switching frequency AC	h^{-1}	2000		2000
Dependence of the switching	AC-1	h^{-1}	800		800
frequency z^{\prime} on the operational current	AC-2	h^{-1}	400		300
I^{\prime} and operational voltage U^{\prime} :	AC-3	h^{-1}	1000		750
$z^{\prime}=z \cdot\left(l_{e} / 1\right) \cdot\left(400 \mathrm{~V} / \mathrm{U}^{\prime}\right)^{1,5} \cdot 1 / \mathrm{h}$	AC-4	h^{-1}	130		130

Contactors LSD6
Conductor Cross-Sections-Contactors LSD6

Type Size			$\begin{gathered} \text { LSD6 } \\ 6 \end{gathered}$
Screw terminals	Main conductors: without box terminal/busbar connection - Finely stranded with cable lug ${ }^{11}$ - Stranded with cable lug ${ }^{11}$ - AWG cables, solid or stranded - Connecting bar (max. width) - Terminal screw Tightening torque	mm^{2} mm^{2} AWG mm Nm	$\begin{gathered} 16 \ldots 95 \\ 25 \ldots 120 \\ 4 \ldots 250 \mathrm{kcmil} \\ 17 \\ \mathrm{M} 8 \times 25(\mathrm{SW} 13) \\ 10 \ldots 14(89 \ldots 124 \mathrm{lb} . \mathrm{in}) \\ \hline \end{gathered}$
	Auxiliary conductors: - Solid - Finely stranded with end sleeve - AWG cables, solid or stranded - Terminal screw Tightening torque	$\begin{gathered} \mathrm{mm}^{2} \\ \mathrm{~mm}^{2} \\ \text { AWG } \\ \mathrm{Nm} \\ \hline \end{gathered}$	$\begin{gathered} 2 \times(0.5 \ldots 1.5)^{2)} ; 2 \times(0.75 \ldots 2.5)^{2)} \text { acc. to IEC } 60947 ; \text { max. } 2 \times(0.75 \ldots 4) \\ 2 \times(0.5 \ldots 1.5)^{2)} ; 2 \times(0.75 \ldots 2.5)^{2 \prime} \\ 2 \times(18 \ldots 14) \\ \mathrm{M} 3(\text { PZ 2) } \\ 0.8 \ldots 1.2(7 \ldots 10.3 \mathrm{lb} . \mathrm{in}) \\ \hline \end{gathered}$
Cage Clamp terminals (on request)	Auxiliary conductors: - Solid - Finely stranded with end sleeve - Finely stranded without end sleeve - AWG cables, solid or stranded	$\begin{gathered} \mathrm{mm}^{2} \\ \mathrm{~mm}^{2} \\ \mathrm{~mm}^{2} \\ \text { AWG } \end{gathered}$	$\begin{gathered} 2 \times(0.25 \ldots 2.5) \\ 2 \times(0.25 \ldots 1.5) \\ 2 \times(0.25 \ldots 2.5) \\ 2 \times(24 \ldots 14) \\ \hline \end{gathered}$

1) When connecting cable lugs according to DIN 46235 , use LSZ6DOO1 terminal cover for conductor cross-sections from $95 \mathrm{~mm}^{2}$ to ensure phase spacing.
2) If two different conductor cross-sections are connected to one clamping point, both cross-sections must lie in the range specified. If identical cross-sections are used, this restriction does not apply.

Technical Specification - Electromechanical Contactors Series ALEA LS

- Contactors LSDE
- Main Circuit-Contactors LSDE

Type Size			LSDE22	LSDE26	LSDE30
			10	10	10
AC capacity					
Utilization category AC-1, Switching resistive loads					
Rated operational current $\mathrm{I}_{\text {e }}$	at $40^{\circ} \mathrm{C}$ up to 690 V	A	275	330	
	at $60^{\circ} \mathrm{C}$ up to 690 V	A	250	300	
	at $60^{\circ} \mathrm{C}$ up to 1000 V	A	100	150	
Rated power for $\mathrm{AC} \mathrm{loads}{ }^{1 /}$	230 V	kW	94	113	
P.f. $=0.95$ (at $60^{\circ} \mathrm{C}$)	400 V	kW	164	197	
	500 V	kW	205	246	
	690 V	kW	283	340	
	1000 V	kW	164	246	
Minimum conductor cross-section	at $40^{\circ} \mathrm{C}$	mm^{2}	150	185	
for loads with $\mathrm{I}_{\text {e }}$	at $60^{\circ} \mathrm{C}$	mm^{2}	120		
Utilization categories AC-2 and AC-3					
Rated operational currents $\mathrm{I}_{\text {e }}$	up to 500 V	A	225	265	300
	690 V	A	225	265	280
	1000 V	A	68	95	95
Rated power for slipping or squirrel cage	230 V	kW	73	85	97
motors at 50 and 60 Hz	400 V	kW	128	151	171
	500 V	kW	160	189	215
	690 V	kW	223	265	280
	1000 V	kW	90	132	132
Thermal load capacity	10 s current ${ }^{2 / 1}$	A	1800	2400	2400
Power loss per conducting path	at $\mathrm{l}_{\mathrm{e}} / \mathrm{AC}-3 / 500 \mathrm{~V}$	W	17	18	22
Utilization category AC-4 (at $\left.\mathrm{I}_{\mathrm{a}}=6 \times \mathrm{I}_{\mathrm{e}}\right)^{1 /}$					
- Rated operational current $\mathrm{I}_{\text {e }}$	up to 400 V	A	195	230	280
Rated power for squirrel-cage motors with 50 and 60 Hz	up to 400 V	kW	110	132	160
- The following applies to a contact endurance of about 200000 operating cycles:					
- Rated operational currents I	up to 400 V	A	96	117	125
	690 V	A	85	105	115
	1000 V	A	42	57	57
- Rated power for squirrel-cage motors with 50 and 60 Hz	230	kW	30	37	40
	400 V	kW	54	66	71
	500 V	kW	67	82	87
	690 V	kW	82	102	112
	1000 V	kW	59	80	80
Utilization category AC-6a, switching AC transformers					
- Rated operational current $\mathrm{l}_{\text {e }}$					
For inrush current $\mathrm{n}=20$	up to 690V	A	227	265	273
For inrush current $\mathrm{n}=30$	up to 690V	A	151	182	182
- Rated power P	at 230 V	KVA	90	105	109
For inrush current $\mathrm{n}=20$	400V	KVA	157	183	189
	500 V	KVA	196	229	236
	690 V	KVA	271	317	326
	1000 V	KVA	117	164	164
For inrush current $\mathrm{n}=30$	at 230 V	KVA	60	72	72
	400V	KVA	105	126	126
	500 V	KVA	130	158	158
	690V	KVA	180	217	217
	1000 V	KVA	117	164	164
For deviating inrush current factors x, the power must be recalculated as follows: $P_{x}=P_{\text {n30 }} 0 \cdot 30 / x$					

- Rated operational current I_{e}
invush current $\mathrm{n}=20$
- Rated power P

For inrush current $\mathrm{n}=20$

Utilization category AC-6b, switching low-inductance (low-loss, metallized dielectric) AC capacitors

Ambient temperature $40^{\circ} \mathrm{C}$			
Rated operational currents I	up to 500 V	A	183
Rated power for single capacitors or	at 230 V	kvar	73
banks of capacitors (minimum	400 V	kvar	127
inductance of $6 \mu \mathrm{H}$ between capacitors	500 V	kvar	159
connected in parallel) at $50 \mathrm{~Hz}, 60 \mathrm{~Hz}$	690 V	kvar	127

1) Industrial furnaces and electric heaters with resistance heating, etc. (increased power consumption on heating up has been taken into account).
2) According to IEC 60947-4-1.

Technical Specification - Electromechanical Contactors Series ALEA LS

Contactors LSDE

Main Circuit-Contactors LSDE

Utilization category DC-1 Switching resistive loads (L/R $\leq 1 \mathrm{~ms}$)

- Rated operational current $I_{e}\left(\right.$ at $\left.60^{\circ} \mathrm{C}\right)$
- 1 conducting path
- 2 conducting paths in series
- 3 conducting paths in series
-2 conducting paths in series
-3 conducting paths in series
Switching frequency \mathbf{z} in operating cycles/hour
- Contactors without overload relay

Dependence of the switching
frequency z^{\prime} on the operational current
I^{\prime} and operational voltage U^{\prime} :
$z^{\prime}=z \cdot\left(I_{\mathrm{e}} / I^{\prime}\right) \cdot\left(400 \mathrm{~V} / U^{\prime}\right)^{1,5} \cdot 1 / \mathrm{h}$
No-load switching
frequency $A C$

AC-1	h^{-1}
750	

AC-2	h^{-1}

Contactors LSDE

- Conductor Cross-Sections-Contactors LSDE

Type			
Size			10
Conductor cross-sections of main conductors			
Screw terminals	Main conductors: - Finely stranded with cable lug ${ }^{\prime \prime}$ - Stranded with cable lug ${ }^{\prime \prime}$ - AWG cables, solid or stranded - Connecting bar (max. width) - Terminal screw - Tightening torque	mm^{2} mm^{2} AWG mm Nm	$\begin{gathered} 50 \ldots 240 \\ 70 \ldots 240 \\ 2 / 0 \ldots 500 \mathrm{kcmil} \\ 25 \\ \mathrm{M} 10 \times 30(\mathrm{SW} 17) \\ 14 \ldots 24(124 \ldots 210 \mathrm{lb} . \mathrm{in}) \end{gathered}$
	Auxiliary conductors: - Solid - Finely stranded with end sleeve - AWG cables, solid or stranded - Terminal screw - Tightening torque	mm^{2} mm^{2} AWG Nm	$\begin{gathered} 2 \times(0.5 \ldots 1.5)^{2)} ; 2 \times(0.75 \ldots 2.5)^{2)} \\ \text { acc. to IEC } 60947 ; \text { max. } 2 \times(0.75 \ldots 4) \\ 2 \times(0.5 \ldots 1.5)^{2)} ; 2 \times(0.75 \ldots 2.5)^{2)} \\ 2 \times(18 \ldots 14) \\ M 3(\text { PZ 2) } \\ 0.8 \ldots 1.2(7 \ldots 10.3 \mathrm{lb} . \mathrm{in}) \end{gathered}$
Cage Clamp terminals (on request)	Auxiliary conductors: - Solid - Finely stranded with end sleeve - Finely stranded without end sleeve - AWG cables, solid or stranded	mm^{2} mm^{2} mm^{2} AWG	$\begin{gathered} 2 \times(0.25 \ldots 2.5) \\ 2 \times(0.25 \ldots 1.5) \\ 2 \times(0.25 \ldots 2.5) \\ 2 \times(24 \ldots 14) \end{gathered}$

1) When connecting cable lugs according to DIN 46235, use LSZ6 DOO1 terminal cover for conductor cross-sections from $95 \mathrm{~mm}^{2}$ to ensure phase spacing.
2) If two different conductor cross-sections are connected to one clamping point, both cross-sections must lie in the range specified. If identical cross-sections are used, this restriction does not apply.

Technical Specification - Electromechanical Contactors Series ALEA LS

- Contactors LSDG

■ General Data - Contactors LSDG

Type
Size

1) See "Endurance of the main contacts"
2) See "Conductor cross-sections"
3) See "Electromagnetic compatibility (EMC)"
4) According to IEC 60 947-4-1

Control - Contactors LSDG

Type			LSDG41		LSDG51
Size			12		12
Operating range of the solenoid AC/DC (UC)	AC			0.8 ... $1.1 \times$	
Power consumption of the solenoid					
- Conventional operating mechanism					
- AC operation	Closing at U_{5} min	VA/p.f.	700/0.9		
	Closing at U_{5} max	VA/p.f.	830/0.9		
	Closed at U_{5} min	VA/p.f.	7.6/0.9		
	Closed at U_{5} max	VA/p.f.	9.2/0.9		
- DC operation	Closing at U_{5} min	W	770		
	Closing at U_{s} max	W	920		
	Closed at U_{s} min	W	8,5		
	Closed at U_{s} max	W	10		
PLC control input (EN 61131-2/type 2)			$24 \mathrm{VDC} / \leq 30 \mathrm{~mA}$ power consumption, (operating range 17 ... 30VDC)		
Operating times (Total break time = Opening delay + Arcing time)					
- Conventional operating mechanism					
- at $0.8 \times U_{s}$ min ... $1.1 \times U_{s}$ max	Closing delay	ms	$45 . . .100$		
	Opening delay	ms	60 ... 100		
- at U_{5} min ... U_{5} max	Closing delay	ms	50 ... 70		
	Opening delay	ms	$70 . .100$		
- Arcing time		ms	10 ... 15		

Contactors LSDG
\square Main Circuit-Contactors LSDG

Type Size			$\begin{gathered} \text { LSDG41 } \\ 12 \\ \hline \end{gathered}$	$\begin{gathered} \text { LSDG51 } \\ 12 \\ \hline \end{gathered}$
AC capacity				
Utilization category AC-1, Switching resistive loads				
Rated operational current $I_{\text {e }}$	at $40^{\circ} \mathrm{C}$ up to 690 V	A	430	610
	at $60^{\circ} \mathrm{C}$ up to 690 V	A	400	550
	at $60^{\circ} \mathrm{C}$ up to 1000 V	A	200	200
Rated power for AC loads ${ }^{1 /}$	230 V	kW	151	208
P.f. $=0.95$ (at $60^{\circ} \mathrm{C}$)	400 V	kW	263	362
	500 V	kW	329	452
	690 V	kW	454	624
	1000 V	kW	329	329
Minimum conductor cross-section	at $40^{\circ} \mathrm{C}$	mm^{2}	2×150	2×185
for loads with $I_{\text {e }}$	at $60^{\circ} \mathrm{C}$	mm^{2}	240	2×185
Utilization categories AC-2 and AC-3				
Rated operational currents $I_{\text {e }}$	up to 500 V	A	400	500
	690 V	A	400	450
	1000 V	A	180	180
Rated power for slipping or squirrel-cage	230 V	kW	132	164
motors at 50 and 60 Hz	400 V	kW	231	291
	500 V	kW	291	363
	690 V	kW	400	453
	1000 V	kW	250	250
Thermal load capacity	10 s current ${ }^{2}$	A	3200	4000
Power loss per conducting path	at $\mathrm{l}_{\mathrm{e}} /$ AC-3/500V	W	35	55
Utilization category AC-4 (at $\left.\mathrm{I}_{\mathrm{a}}=6 \times \mathrm{l} \mathrm{l}_{\mathrm{e}}\right)^{1 /}$				
- Rated operational current $\mathrm{l}_{\text {e }}$	up to 400 V	A	350	430
Rated power for squirrel-cage motors with 50 and 60 Hz	up to 400V	kW	200	250
- The following applies to a contact endurance of about 200000 operating cycles:				
- Rated operational currents I	up to 400 V	A	150	175
	690 V	A	135	150
	1000 V	A	80	80
- Rated power for squirrel-cage motors with 50 and 60 Hz	230 V	kW	48	56
	400 V	kW	85	98
	500 V	kW	105	123
	690 V	kW	133	148
	1000 V	kW	113	113
Utilization category AC-6a, switching AC transformers				
- Rated operational current $\mathrm{I}_{\text {e }}$				
For inrush current $\mathrm{n}=20$	up to 690V	A	377	404
For inrush current $\mathrm{n}=30$	up to 690V	A	251	270
- Rated power P				
For inrush current $\mathrm{n}=20$	at 230 V	kVA	150	161
	400 V	kVA	261	280
	500 V	kVA	326	350
	690 V	kVA	450	483
	1000 V	kVA	311	311
For inrush current $\mathrm{n}=30$	at 230 V	kVA	100	107
	400 V	kVA	173	187
	500 V	kVA	217	234
	690 V	kVA	300	323
	1000 V	kVA	311	311
For deviating inrush current factors x , the power must be recalculated as follows: $\mathrm{P}_{\mathrm{x}}=\mathrm{P}_{\mathrm{n} 30} \cdot 30 / \mathrm{x}$				

For deviating inrush current factors x, the power must be recalculated as follows: $P_{x}=P_{n 30} \cdot 30 / x$

Utilization category AC-6b, switching low-inductance (low-loss, metallized dielectric) AC capacitors				
Ambient temperature $40^{\circ} \mathrm{C}$				
Rated operational currents I 。	up to 500 V	A	287	407
Rated power for single capacitors or	at 230 V	kVAr	114	162
banks of capacitors (minimum	400 V	kVAr	199	282
inductance of $6 \mu \mathrm{H}$ between capacitors	500 V	kVAr	248	352
connected in parallel) at $50 \mathrm{~Hz}, 60 \mathrm{~Hz}$	690 V	kVAr	199	282

1) Industrial furnaces and electric heaters with resistance heating, etc. (increased power consumption on heating up has been taken into account)
2) According to IEC 60947-4-1

Technical Specification - Electromechanical Contactors Series ALEA LS

Contactors LSDG
Main Circuit-Contactors LSDG

| Type
 Size | LSDG41 | 12 |
| :--- | :---: | :---: | | LSDG51 | |
| :---: | :---: |
| DC capacity | |

Utilization category DC-1 Switching resistive loads (L/R $\leq 1 \mathrm{~ms}$)

- Rated operational current $I_{e}\left(\right.$ at $\left.60^{\circ} \mathrm{C}\right)$
-1 conducting path
- 3 conducting paths in series

up to 24 V		
60 V	A	400
110 V	A	330
220 V	A	33
440 V	A	3,8
600 V	A	0,9
up to 24 V	A	0,6
60 V	A	400
110 V	A	400
220 V	A	400
440 V	A	400
600 V	A	4
up to 24 V	A	2
60 V	A	400
110 V	A	400
220 V	A	400
440 V	A	400
600 V	A	11
A	5,2	

Utilization category DC-3 und DC-5, Shunt-wound and series-wound motors (L/R $\leq 15 \mathrm{~ms}$)

- Rated operational current I_{e} (at $60^{\circ} \mathrm{C}$)
- 1 conducting path
- 2 conducting paths in series
- 2 conducting paths in series

Contactors LSDG

■ Conductor Cross-Sections-Contactors LSDG

Type			LSDG
Size			12
Screw terminals	Main conductors: without box terminal/busbar connection (box terminals on request)		
	- Finely stranded with cable lug'	mm^{2}	50 ... 240
	- Stranded with cable lug ${ }^{11}$	mm^{2}	$70 . . .240$
	- AWG cables, solid or stranded	AWG	2/0 ... 500 kcmil
	- Connecting bar (max. width)	mm	25
	- Terminal screw		M 10×30 (SW 17)
	- Tightening torque	Nm	$14 . . .24$ (124 ... $210 \mathrm{lb} . \mathrm{in}$)
	Auxiliary conductors:		
	- Solid	mm^{2}	$\begin{gathered} 2 \times(0.5 \ldots 1 . .5)^{22} ; 2 \times(0.75 \ldots 2 . .5)^{2)} \text { acc. to IEC } \\ 60947 ; \max .2 \times(0.75 \ldots 4) \end{gathered}$
	- Finely stranded with end sleeve	mm^{2}	$2 \times(0.5 \ldots 1.5)^{2)} ; 2 \times(0.75 \ldots 2.5)^{2)}$
	- AWG cables, solid or stranded	AWG	$2 \times(18 . . .14)$
	- Terminal screw		M3 (PZ 2)
	- Tightening torque	Nm	0.8 ... 1.2 (7 ... $10.3 \mathrm{lb} . \mathrm{in})$
Cage Clamp terminals (on request)	Auxiliary conductors:		
	- Solid	mm^{2}	$2 \times(0.25 \ldots 2.5)$
	- Finely stranded with end sleeve	mm^{2}	$2 \times(0.25 \ldots 1.5)$
	- Finely stranded without end sleeve	mm^{2}	$2 \times(0.25 \ldots 2.5)$
	- AWG cables, solid or stranded	AWG	$2 \times(24 . . .14)$

1) When connecting cable lugs according to DIN46234 for conductor cross-sections of $185 \mathrm{~mm}^{2^{2}}$ and more and according to DIN46235 for conductor cross-sections of $240 \mathrm{~mm}{ }^{2}$ and more, the LSZED001 terminal cover must be used to keep the phase clearance
2) If two different conductor cross-sections are connected to one clamping point, both cross-sections must lie in the range specified. If identical cross-sections are used, this restriction does not apply.

Technical Specification - Electromechanical Contactors Series ALEA LS

- CSA and UL Rated Data for Contactors LSD, LSS and LSU

■ CSA and UL Rated Data for Contactors LSDD/0, LSSD/0 and LSUD/0

CSA and UL Rated Data for Contactors LSD2, LSU2, LSD3

CSA and UL Rated Data for Contactors LSD, LSS and LSU
\square CSA and UL Rated Data for Auxiliary Contacts

| Size | 00 | | $00-12$ |
| :--- | :---: | :---: | :---: | :---: |

CSA and UL Rated Data for Contactors LSD6, LSDE

CSA and UL Rated Data for Contactors LSDG

Technical Specification - Electromechanical Contactors Series ALEA LS

General Information - Vacuum Contactors LSDH

Vakuum Contactors LSDH - Overview

IEC 60947-4-1, EN 60947-4-1 (VDE 0660 Part 102)
The LSDH contactors are climate-proof. They are finger-safe according to EN 50274 . Terminal covers may have to be fitted onto the connecting bars, depending on the configuration with other devices (see chapter "Accessories" - terminal covers).

FUNCTION

MAIN CONTACTS

Contact erosion indication with LSDH 6/8 vacuum contactors

The contact erosion of the vacuum interrupters can be checked during operation with the help of 3 white double slides on the contactor base. If the distance indicated by one of the double slides is < 0.5 mm while the contactor is in the closed position, the vacuum interrupter must be replaced

To ensure maximum reliability, it is recommended to replace all 3 vacuum interrupters.
AUXILIARY CONTACTS
Contact reliability
The auxiliary contacts are suitable for solid-state circuits

- with currents $\geq 1 \mathrm{~mA}$
- and voltages from 17 V

SURGE SUPPRESSION

Control circuit

Protection of coils against overvoltage:
AC operation

- Fitted with varistors as standard

DC operation
Retrofitting options:

- With varistors

If LSDH 6/8 is to be used for DC operation, an additional reversing contactor is required; this is included in the scope of supply in the same packaging as the vacuum contactor.

Electromagnetic Compatibility

LSDH 6/8 contactors for AC operation are fitted with an electronically controlled solenoid operating mechanism with a high interference immunity.

Contactor type	Rated control supply voltage $U_{\mathbf{s}}$	Overvoltage type (IEC 60801)	Degree of severity (IEC 60801)	Overvoltage strength
SSDH6	$110 \mathrm{~V} \ldots . .132 \mathrm{~V}$	Burst	3	2 kV
LSDH8	Surge	4	6 kV	
	$200 \mathrm{~V} \ldots 277 \mathrm{~V}$	Burst	4	4 kV
		Surge	4	5 kV
	Burst	4	4 kV	
	$380 \mathrm{~V} \ldots 600 \mathrm{~V}$	Surge	4	6 kV

Note:
During operation in installations in which the emitted interference limits cannot be observed, e.g. when used for output contactors in converters,
LSDH6/8 contactors without a main conductor path circuit are recommended (see description next page).

APPLICATION

The standard LSDH6. and LSDHB. contactors with electronically controlled contactor mechanism, have high resistance to electromagnetic interference.
Causes for such interference can be, for example:

- Frequency converters which are operated nearby can cause periodic overvoltages at the control level of the contactors.
- High-energy pulses cause by switching operations and atmospheric discharges can cause interference on the control cables.

To reduce interference voltages caused by frequency converters, the manufacturer recommends the use of e.g. input filters, output filters, grounding or shielding in the installation.
Further measures that should be applied for overvoltage damping:

- Feeding the contactors using control transformer according to EN 60204 - rather than directly from the network
- Use of surge arresters, if required

Control circuit

The rectifier bridge is connected to varistors for protection against overvoltages. The built-in rectifier bridge affords sufficient protection for the coils.

Main circuit

As standard LSDH. contactors with integrated RC varistors.

Protection of the main current paths

An integrated $R C$ varistor connection for the main current paths of the contactors dampens the switching overvoltage rises to safe values. This prevents multiple restriking. The operator of an installation can therefore rest assured that the motor winding cannot be damaged by switching overvoltages with steep voltage rises.

Important note:

The overvoltage damping circuit is not required if LSDH $6 / 8$ contactors are used in circuits with DC choppers, frequency converters or speed-variable operating mechanisms, for example. It could be damaged by the voltage peaks and harmonics which are generated. This may cause phase-to-phase short-circuits in the contactors.
Order special contactor version without overvoltage damping (on request).

Contactors LSDH6 and LSDH8 at 230VAC

Endurance of the auxiliary contacts
The contact endurance for utilization category AC-12 or AC-15/AC-14 depends mainly on the breaking current. It is assumed that the operating mechanisms are switched randomly, i.e. not synchronized with the phase angle of the supply system.

Diagram:

1) Operating cycles

Contact Erosion Indication with LSDH6 and LSDH8 Vacuum Contactors

The contact erosion of the vacuum interrupters can be checked during operation with the help of 3 white double slides on the contactor base.
If the distance indicated by one of the double slides is $<0.5 \mathrm{~mm}$ while the contactor is in the closed position, the vacuum interrupter must be replaced. To ensure maximum reliability, it is recommended to replace all 3 vacuum interrupters.

Endurance of the Main Contacts

1) Operating cycles at ...
$P_{N}=$ Rated power for squirrel-cage motors at 400 V
$I_{a}=$ Breaking current
$\mathrm{I}_{\mathrm{e}}=$ Rated operational current

Technical Specification - Electromechanical Contactors Series ALEA LS

- General Information - Vacuum Contactors LSDH

Rated Data of the Auxiliary Contacts

Type		LSDH6 and LSDH8 acc. to IEC 60947-5-1 (VDE 0660 Part 200)
Rated insulation voltage $\mathbf{U}_{\mathbf{i}}$ (degree of pollution 3, overvoltage category III)	V	690
Continuous thermal current $\mathrm{I}_{\text {th }}=$ Rated operational current $\mathrm{I}_{\mathrm{e}} / \mathrm{AC}-12$	A	10
AC load, Rated operational current $I_{\text {e }} /$ AC-15/AC-14		
- for rated operational voltage $U_{\text {e }} \quad 24 \mathrm{~V}$	A	10
110 V	A	10
125 V	A	10
220 V	A	6
230 V	A	5,6
380 V	A	4
400 V	A	3,6
500 V	A	2,5
660 V	A	2,5
690 V	A	2,3
DC load, Rated operational current $\mathrm{I}_{\mathrm{e}} / \mathrm{DC-12}$		
- for rated operational voltage $U_{\text {e }}$ 24V	A	10
60 V	A	10
110 V	A	3,2
125 V	A	2,5
220 V	A	0,9
440 V	A	0,33
600 V	A	0,22
DC load, Rated operational current $\mathrm{I}_{\mathrm{e}} / \mathrm{DC-13}$		
- for rated operational voltage $U_{\text {e }} \quad 24 \mathrm{~V}$	A	10
60 V	A	5
110 V	A	1,14
125 V	A	0,98
220 V	A	0,48
440 V	A	0,13
600 V	A	0,07
CSA and UL rated data for the auxiliary contacts		
Rated voltage	VAC max.	600
Switching capacity		A 600, P 600

General Information - Vacuum Contactors LSDH

- General Data - Vacuum Contactors LSDH6, LSDH8

Type		LSDH6	LSDH8
Size		14	14
Permissible mounting position, installation instructions ${ }^{1 / 2)} \quad$ AC and DC operation The contactors are designed for operation on a vertical mounting surface.			
Mechanical endurance Electrical endurance	Operating cycles		
Rated insulation voltage U_{i} (degree of pollution 3, overvoltage category III)	kV		
Rated impulse withstand voltage $\mathbf{U}_{\text {imp }}$	kV		
Safe isolation between the coil and the main contacts acc. to EN 60947-1, Appendix N	kV	1	
Permissible ambient temperature	${ }^{\circ} \mathrm{C}$	$\begin{aligned} & -25 \ldots+55 \\ & -55 \ldots+80 \end{aligned}$	
	${ }^{\circ} \mathrm{C}$		
Degree of protection acc. to EN 60947-1, Appendix C		IP00/open, coil assembly IP40	
Touch protection acc. to EN 50274		Finger-safe with cover	
Shock resistance			
- Rectangular pulse AC operation	g / ms	8.1/5 and 4.7/10 $9 / 5$ and $5.7 / 10$ $12.8 / 5$ and $7.4 / 10$ 14.4/5 and $9.1 / 10$	$\begin{aligned} & 9.5 / 5 \text { and } 5.7 / 10 \\ & 8.6 / 5 \text { and } 5.1 / 10 \\ & 13.5 / 5 \text { and } 7.8 / 10 \\ & 13.5 / 5 \text { and } 7.8 / 10 \\ & \hline \end{aligned}$
DC operation	g / ms		
- Sine pulse AC operation	g / ms		
DC operation	g / ms		
Conductor cross-sections		See "Conductor Cross-Sections"	
Electromagnetic compatibility (EMC)		See "Electromagnetic compatibility (EMC)"	
Short-circuit protection			
- Fuse link gl/gG NH, DIAZED, NEOZED acc. to IEC 60 947-4-1/DIN EN 60 947-4-1			
Type of coordination "1"	A	1000	1250
Type of coordination "2"	A	500	630
Weld-free ${ }^{4)}$	A	400	500
Auxiliary circuit			
- Fuse links gl/gG DIAZED, NEOZED (weld-free protection af $\mathrm{l}_{k} \geq 1 \mathrm{kA}$) - Or miniature circuit breakers with C characteristic $\mathrm{I}_{k}<400 \mathrm{~A}$	A	10	
	A	10	

1) To easily replace the laterally mounted auxiliary switches it is recommended to maintain a minimum distance of 30 mm between the contactors.
2) If mounted at a 90° angle (conducting paths are horizontally above each other), the switching frequency is reduced by 80% compared with the normal values.
3) See page before "Endurance of the auxiliary contacts".
4) Test conditions according to IEC 60947-4-1.

5) At 24 VDC ; for further voltages, deviations of up to $\pm 10 \%$ are possible.

Technical Specification - Electromechanical Contactors Series ALEA LS

Vacuum Contactors LSDH

- Main Circuit - Vacuum Contactors LSDH6, LSDH8

			LSDH6	LSDH8
			14	14
AC capacity				
Utilization category AC-1, Switching resistive loads				
- Rated operational current $I_{\text {e }}$	at $40^{\circ} \mathrm{C}$ up to 690 V	A	700	910
	at $60^{\circ} \mathrm{C} \mathrm{up} \mathrm{to} 690 \mathrm{~V}$	A	630	850
	at $60^{\circ} \mathrm{C}$ up to 1000 V	A	450	800
- Rated power for AC loads ${ }^{1 /}$	230 V	kW	240	323
P.f. $=0.95\left(\mathrm{at} 60^{\circ} \mathrm{C}\right)$	400 V	kW	415	558
	500 V	kW	545	735
	690 V	kW	720	970
	1000 V	kW	780	1385
- Minimum conductor cross-section for loads with $I_{\text {e }}$	at $40^{\circ} \mathrm{C}$	mm^{2}	2×24	$\mathrm{I}_{\mathrm{e}} \geq 800 \mathrm{~A}: 2 \times 60 \times 5$ (Cu busbars)
	at $55^{\circ} \mathrm{C}$	mm^{2}	2×18	$\mathrm{I}_{\mathrm{e}}<800 \mathrm{~A}: 2 \times 240$
Utilization categories AC-2 and AC-3				
- Rated operational currents $I_{\text {e }}$	up to 690V	A	630	820
	1000 V	A	435	580
- Rated power for slipping or squirrel-cage motors at 50 and 60 Hz	at 230 V	kW	200	260
	400 V	kW	347	450
	500 V	kW	434	600
	690V	kW	600	800
	1000 V	kW	600	800
Utilization category AC-4 (at $\mathrm{I}_{\mathrm{a}}=6 \times \mathrm{l} \mathrm{I}_{\mathrm{e}}{ }^{1 /}$				
- Rated operational current $\mathrm{I}_{\text {e }}$	up to 690V	A	610	690
- Rated power for squirrel-cage motors with 50 and 60 Hz	up to 400V	kW	355	400
- The following applies to a contact endurance of about 200000 operating cycles:				
- Rated operational currents $\mathrm{I}_{\text {e }}$	up to 690V	A	300	360
	1000 V	A	210	250
- Rated power for squirrel-cage motors with 50 and 60 Hz	230 V	kW	97	110
	400 V	kW	168	191
	$500 \mathrm{~V}^{\prime \prime}$	kW	210	250
	$690 \mathrm{~V}^{11}$	kW	278	335
	$1000 \mathrm{~V}^{1 \prime}$	A	290	350
Utilization category AC-6a, switching AC transformers				
- Rated operational current $I_{\text {e }}$				
- For inrush current $\mathrm{n}=20$	up to 400V	A	513	675
- For inrush current $\mathrm{n}=30$	up to 400 V	A	342	450
- Rated power P	at 230 V	kVA	195	256
- For inrush current $\mathrm{n}=20$	400 V	kVA	338	445
	500 V	kVA	444	584
	690V	kVA	586	771
	1000 V	kVA	752	1003
- For inrush current $\mathrm{n}=30$	at 230 V	kVA	130	171
	400 V	kVA	226	297
	500V	kVA	296	389
	690 V	kVA	390	514
	1000 V	kVA	592	778

Utilization category AC-6b, switching low-inductance (low-loss, metallized dielectric) AC capacitors

- Rated operational currents I_{e}
- Rated power for single capacitors at 50 Hz and 60 Hz
- Rated power for single capacitors or banks of capacitors (minimum inductance of $6 \mu \mathrm{H}$ between capacitors

up to 400 V	A	433
at 230 V	kVAr	175
400 V	kVAr	300
500 V	kVAr	400
690 V	kVAr	300
at 230 V	kVAr	145
400 V	kVAr	250
500 V	kVAr	333
690 V	kVAr	250

1) Max. permissible rated operational current $I_{e} / A C-4=I_{e} / A C-3$ up to 500 V , for reduced contact endurance and reduced switching frequency
2) For deviating inrush current factors x, the power must be recalculated as follows: $P_{x}=P_{n 30} \cdot 30 / x$

Vacuum Contactors LSDH

- Main Circuit - Vacuum Contactors LSDH6, LSDH8

1) Acc. to IEC 60947-4-1

Conductor Cross Sections - Vacuum Contactors LSDH6, LSDH8

| Type | | LSDH6 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Size | | | LSDH8

3) If two different conductor cross-sections are connected to one clamping point, both cross-sections must lie in the range specified. If identical cross-sections are used, this restriction does not apply.

CSA and UL Rated Data for Vacuum Contactors LSDH6, LSDH8

Type Size				$\begin{gathered} \text { LSDH6 } \\ \hline \end{gathered}$	$\begin{gathered} \text { LSDH8 } \\ \hline \end{gathered}$
Rated insulation voltage			VAC	600	600
Uninterrupted current	- O		A	630	820
Maximum horsepower ratings (CSA and UL approved values)					
- Rated power for induction motors at 60 Hz		at 200 V	hp	231	290
		230 V	hp	266	350
		460 V	hp	530	700
		575 V	hp	664	860
NEMA/EEMAC ratings					
NEMA/EEMAC size			hp	6	7
Uninterrupted current	Open		A	600	820
	Enclosed		A	540	810
Rated power for induction motors at 60 Hz		at 200 V	hp	150	--
		230 V	hp	200	300
		460 V	hp	400	600
		575 V	hp	400	600

Technical Specification - Electromechanical Contactors Series ALEA LS

Contactors LSR (4-pole) for Switching Resistive Loads

AC und DC OPERATION

According to EN60947-4-1 (VDE0660 Part102).The contactors are suitable for use in any climate. They are finger-safe according to EN50274
The accessories for the 3 -pole ALEA contactors can also be used for the 4 -pole versions.
FUNCTION

- Switching resistive loads
- Isolating systems with ungrounded or poorly grounded neutral conductors
- System transfers when alternative AC power supplies are used
- As contactors, e.g. for variable-speed operating mechanisms which only have to carry current and not switch
- These contactors are also suitable for switching of combined loads at distribution plants (e.g.: supply of heatings, lamps, motors or PC's) with an $\cos \varphi>0,8$ according IEC 60947-4-1 for AC-1
INTEGRATION
MOUNTABLE AUXILIARY CONTACTS

Size 00

Maximum 4 auxiliary contacts.
Size 0
Maximum 2 auxiliary contacts (either laterally mounted or snapped onto the top)
Size 2-3
Maximum 4 auxiliary contacts (either laterally mounted or snapped onto the top).

CONTACTOR ASSEMBLY WITH MECHANICAL INTERLOCK

The 4-pole LSR contactors with 4 NO contacts as the main contacts are suitable for making contactor assemblies with a mechanical interlock, e.g. for system transfers
Size 00
Contactor assemblies can be constructed from two LSRD contactors in conjunction with mechanical interlocks and two connecting clips (Order No.: LSZDW002),
Size 0
When constructing 4-pole contactor assemblies from two LSRO contactors, the fourth pole of the left contactor must always be moved to the left side.
If the laterally mountable LSZOW002 mechanical interlock is used, the contactor assembly is connected with LSZOW004 (2 pcs.).

Sizes 2 and 3

Contactor assemblies can be constructed from two LSR2 or two LSR3 contactors in conjunction with the laterally mountable LSZOW002 mechanical interlock and the LSZ2W002 for size 2 or LSZ3W002 for size 3

General Data - Contactors LSR									
Type			LSRD18	LSRD22	LSR035	LSR040	LSR260	LSR311	LSR314
Size			00	00	0	0	2	3	3
Permissible mounting position ${ }^{1 /}$									
Mechanical endurance		Operating cycles	30 million		10 million				
Electrical endurance at $\mathrm{I}_{\mathrm{e}} / \mathbf{A C}-1 \quad$ Operating cycles			approx. 0.5 million						
Rated insulation voltage $\mathbf{U}_{\mathbf{i}}$ (degree of pollution 3, overvoltage category III)			690						
Permissible ambient temperature	During operation	${ }^{\circ} \mathrm{C}$	$-25 \ldots+60$						
	During storage	${ }^{\circ} \mathrm{C}$	$-55 \text {... + } 80$						
Degree of protection acc. to DIN EN 60947-1, Appendix C	Device		IP20				IP20		
	Connection range						IP00		
Touch protection acc. to EN 50274			finger-safe						
Short-circuit protection of contactors without thermal overload relays									
Main circuit - Fuse links gl/gG NH, DIAZED, NEOZED acc. to IEC 60947-4-1/DIN EN 60947-4-1			352010						
	- Type of coordination "11)	A					160	250	250
	- Type of coordination "2"1)	A					63	125	160
	- Weld-free	A					50	63	100

[^29]Contactors LSR (4-pole) for Switching Resistive Loads

- Control - Contactors LSR

1) With size 00 , $D C$ operation: Operating times at $0.85 \ldots 1.1 \times U_{\text {s }}$

Technical Specification - Electromechanical Contactors Series ALEA LS

Contactors LSR (4-pole) for Switching Resistive Loads

- Main Circuit - Contactors LSR

Type Size			LSRD 18 00	LSRD22 00	LSR035 0	$\begin{gathered} \text { LSR040 } \\ 0 \end{gathered}$	$\begin{gathered} \text { LSR260 } \\ 2 \\ \hline \end{gathered}$	$\begin{gathered} \text { LSR311 } \\ 3 \\ \hline \end{gathered}$	$\begin{gathered} \text { LSR314 } \\ 3 \\ \hline \end{gathered}$
AC capacity									
Utilization category AC-1, switching resistive loads									
- Rated operational currents $\mathrm{I}_{\text {e }}$	at $40^{\circ} \mathrm{C}$ up to 690 V	A	18	22	35	40	60	110	140
	at $60^{\circ} \mathrm{C}$ up to 690 V	A	16	20	30	35	55	100	120
- Rated power for AC loads	230 V	kW	7	8,5	12,5	15	23	42	53
P.f. $=0.95$ (at $40^{\circ} \mathrm{C}$)	400 V	kW	12	14,5	22	26	39	72	92
- Minimum conductor cross-section for loads with	at $40^{\circ} \mathrm{C}$	mm^{2}	3	2,5	10	10	16	50	50
	at $55^{\circ} \mathrm{C}$	mm^{2}	3	2,5	10	10	16	50	50
Utilization category AC-2 and AC-3									
- Rated operational currents $I_{\text {e }}$	at $60^{\circ} \mathrm{C}$, at 400 V	A	9	12	17	25	26	--	--
- Rated power of slipring	at 230 V	kW	3	3	4	5,5	5,5	--	--
or squirrel-cage motors at 50 and 60 Hz	400V	kW	4	5,5	7,5	11	11	--	--

or squirrel-cage motors at 50 and 60 Hz 400V
DC capacity
Utilization category DC-1, switching resistive loads ($L / R \leq 1 m s$)

- Rated operational currents $I_{e}\left(\right.$ at $40^{\circ} \mathrm{C}$)
- 1 conducting path
- 2 conducting paths in series
- 3 conducting paths in series
- 4 conducting paths in series

Utilization category DC-3/DC-5, Shunt-wound and series-wound motors (L/R $\leq 15 \mathrm{~ms}$)

- Rated operational currents $\mathrm{I}_{\mathrm{e}}\left(\right.$ at $\left.40^{\circ} \mathrm{C}\right)$
- 1 conducting path
- 2 conducting paths in series
- 3 conducting paths in series
- 4 conducting paths in series

General Information - Auxiliary Contactors LSH

- General Data - Auxiliary Contactors LSH

Type	LSH
Size	00
Permissible mounting position $A C$ and $D C$ operation The contactors are designed for operation on a vertical mounting surface.	
Upright mounting position - AC operation	Special version required
- DC operation	Standard version
Positively-driven operation of contacts in contactor relays LSH: Yes, in the basic unit and the auxiliary contact block as well as between the basic unit and the snap-on auxiliary contact block (removable) acc. to: - ZH $1 / 457$ - EN 60947-5-1, Appendix L	Explanations: There is positively-driven operation if it is ensured that the NC and NO contacts cannot be closed at the same time. $\mathrm{ZH1} / 457$ Safety rules for control units on power-operated presses in the metalworking industry. EN 60947-5-1, Appendix L Low-voltage control gear, control equipment, and switching elements. Special requirements for positively-driven contacts SUVA Accident prevention regulations of the „Schweizer Unfallverhütungsanstalt" (Swiss Institute for Accident Insurance)
Contact reliability Contact reliability at $17 \mathrm{~V}, 1 \mathrm{~mA}$ acc. to EN 60947-5-4	Frequency of contact faults $<10^{-8}$, d. h. <1 fault per 100 million operating cycles

- Contact Endurance for AC-15/AC-14 and DC-13 Utilization Categories

The contact endurance is mainly dependent on the breaking current. It is assumed that the operating mechanisms are switched randomly, i.e. not synchronized with the phase angle of the supply system.

If magnetic circuits other than the contactor coil systems or solenoid valves are present, e.g. magnetic brakes, protective
measures for the load circuits are necessary. RC elements and freewheel diodes would be suitable as protective measures.
The characteristic curves apply to:

- LSH auxiliary contactors
- LSZDH5 and LSZD05 auxiliary contact blocks

Technical Specification - Electromechanical Contactors Series ALEA LS

General Information - Auxiliary Contactors LSH

Diagram: Contact Endurance

$\mathrm{I}_{\mathrm{a}}=$ Breaking current
$\mathrm{I}_{\mathrm{e}}=$ Rated operational current

1) Basic unit
2) Basic unit with aux. Block snapped on
3) Million operating cycles
4) Snap-on auxiliary contact blocks: $\mathrm{I}_{\mathrm{e}} / D C-13$ max. 6A

- CSA and UL Rated Data for Auxiliary Contactors LSHD

Type Size		$\begin{gathered} \text { LSHD } \\ 00 \end{gathered}$
Basic units and auxiliary contact blocks		
- Rated control supply voltage	VAC	max. 600
- Rated voltage	VAC	600
Switching capacity	A	A 600, Q 60
- Uninterrupted current at 240VAC		10
General data		
Mechanical endurance		
- Basic units	Operating cycles	30 million
- Basic unit with snap-on auxiliary contact block	Operating cycles	10 million
- Solid-state compatible auxiliary contact block	Operating cycles	5 million
Rated insulation voltage $\mathbf{U}_{\mathbf{i}}$ (Rated insulation voltage 3, overload category III)	V	690
Rated impulse withstand voltage $\mathbf{U}_{\text {imp }}$	kV	6
Safe isolation between the coil and the contacts in the basic unit acc. to EN 60947-1, Appendix N	\checkmark	400
Permissible ambient temperature During operation	${ }^{\circ} \mathrm{C}$	-25 ... +60
During storage	${ }^{\circ} \mathrm{C}$	-55 ... +80
Degree of protection acc. to EN 60947-1, Appendix C		IP20, coil assembly IP40
Touch protection acc. to EN 50274		finger-safe
Shock resistance AC/DC operation		
Rectangular pulse	g / ms	10/5 and 5/10
Sine pulse	g / ms	$15 / 5$ and $8 / 10$
Conductor cross-sections (1 or 2 conductors can be connected)		
Auxiliary conductor and coil terminals		Screw terminals
- Solid	mm^{2}	$\begin{gathered} 2 \times(0,5 \ldots 1,5) ; 2 \times(0,75 \ldots 2,5) \text { acc. to IEC } 60947 ; \\ \max .2 \times(1 \ldots 4) \end{gathered}$
- Finely stranded with end sleeve	mm^{2}	$2 \times(0,5 \ldots 1,5) ; 2 \times(0,75 \ldots 2,5)$
- AWG cables, solid or stranded	AWG	$2 \times(20 . . .16) ; 2 \times(18 . . .14) ; 1 \times 12$
- Terminal screws		M3
- tightening torque	Nm	0,8 ... 1,2 (7 ... 10,3 lb.in)
Auxiliary conductor and coil terminals		Cage Clamp terminals (on request)
- Solid	mm^{2}	$2 \times(0,25 \ldots 2,5)$
- Finely stranded with end sleeve	mm^{2}	$2 \times(0,25 \ldots 1,5)$
- Finely stranded without end sleeve	mm^{2}	$2 \times(0,25 \ldots 2,5)$
- AWG cables, solid or stranded	AWG	$2 \times(24 \ldots 14)$
Short-circuit protection		
(weld-free protection at $\mathrm{I}_{\mathrm{k}} \geq 1 \mathrm{kA}$)		
- Fuse links, gl/gG operational class		
- DIAZED	A	10
- NEOZED	A	10
- Or miniature circuit breakers with C characteristic (short-circuit current $\mathrm{I}_{k}<400 \mathrm{~A}$)	A	6

- General Information - Auxiliary Contactors LSH
- Control - Auxiliary Contactors LSHD

Technical Specification - Electromechanical Contactors Series ALEA LS

General Information - Auxiliary Contactors LSH
Contact Capacity - Auxiliary Contactors LSHD

Type Size			LSHD 00
Rated operational currents $\mathrm{I}_{\text {e }}$			
AC-12		A	10
AC-15/AC-14 for rated operational voltage U_{s}	up to 230 V	A	6
	400 V	A	3
	500 V	A	2
	690 V	A	1
DC-12 for rated operational voltage U_{5}			
- 1 conducting path	24 V	A	10
	60 V	A	6
	110 V	A	3
	220 V	A	1
	440 V	A	0,3
	600 V	A	0,15
- 2 conducting paths in series	24 V	A	10
	60 V	A	10
	110 V	A	4
	220 V	A	2
	440 V	A	1,3
	600 V	A	0,65
- 3 conducting paths in series	24 V	A	10
	60 V	A	10
	110 V	A	10
	220 V	A	3,6
	440 V	A	2,5
	600 V	A	1,8
DC-13 for rated operational voltage U_{5}			
- 1 conducting path	24 V	A	$10^{1 /}$
	60 V	A	2
	110 V	A	1
	220 V	A	0,3
	440 V	A	0,14
	600 V	A	0,1
- 2 conducting paths in series	24 V	A	10
	60 V	A	3,5
	110 V	A	1,3
	220 V	A	0,9
	440 V	A	0,2
	600 V	A	0,1
- 3 conducting paths in series	24 V	A	10
	60 V	A	4,7
	110 V	A	3
	220 V	A	1,2
	440 V	A	0,5
	600 V	A	0,26
Switching frequency z			
- In operating cycles/h	AC-12/DC-12	h^{-1}	1000
during normal duty	AC-15/AC-14	h^{-1}	1000
for utilization category	DC-13	h^{-1}	1000
- No-load switching frequency		h^{-1}	10000

- No-load switching frequency

Dependence of the switching frequency z ' on the operational current I^{\prime} and operational voltage U^{\prime}
$z^{\prime}=z \cdot 1 \mathrm{e} / \mathrm{I}^{\prime} \cdot\left(\mathrm{Ue} / \mathrm{U}^{\prime}\right)^{1.5} \cdot 1 / \mathrm{h}$

1) Snap-on auxiliary contact blocks: 6A

- General Information - Auxiliary Contactors LSH

DC OPERATION

IEC 60947 and EN 60947 (VDE 0660).
The LSH auxiliary contactors for switching auxiliary circuits are tailored to the special requirements of working with electronic controls.
The LSHD ... G/N auxiliary contactors cannot be extended with auxiliary contact blocks.

FUNCTION

No auxiliary contact blocks can be snapped onto these auxiliary contactors. They have a low power consumption, an extended magnetic coil operating range and an integrated surge suppressor for damping opening surges (exception: LSHD ... N).
TECHNICAL SPECIFICATIONS
All technical specifications not mentioned in the table below are identical to those of the LSHD06.0., LSHD06.5., LSHD06.3 auxiliary contactors.
General Data - Auxiliary Contactors LSH

Type Size		$\begin{gathered} \text { LSHD...N } \\ 00 \\ \hline \end{gathered}$	$\begin{gathered} \text { LSH...G } \\ 00 \end{gathered}$
Magnetic coil operating range		$0.7 \ldots 1.25 \times \mathrm{U}_{\text {s }}$	
Power consumption of the magnetic coil (for cold coil)			
Closing $=$ closed			
at $U_{5}=17 \mathrm{~V}$	W	1,2	
at $\mathrm{U}_{5}=24 \mathrm{~V}$	W	2,3	
at $U_{5}=30 \mathrm{~V}$	W	3,6	
Permissible residual current of the electronics for 0 signal		$<10 \mathrm{~mA} \times\left(24 \mathrm{~V} / \mathrm{U}_{\mathrm{s}}\right)$	
Overvoltage configuration of the magnetic coil		No overvoltage damping	With diode integrated
Operating times			
- Closing at 17 V			
- ON-delay NO	ms		
- OFF-delay NC	ms		
- At 24 V			
- ON-delay NO	ms		
- OFF-delay NC	ms		
- At 30 V			
- ON-delay NO	ms		
- OFF-delay NC	ms		
- Closing at $17 \ldots 30 \mathrm{~V}$			
- OFF-delay NO	ms	$7 . .17$	$40 . . .60$
- ON-delay NC	ms	$22 . .30$	$60 . . .70$
Upright mounting position			

Technical Specification - Electromechanical Contactors Series ALEA LS

General Information - Contactors LSS

DC OPERATION

IEC 60947, EN 60947 (VDE 0660).
The LSS contactors for switching motors are tailored to the special requirements of working with electronic controls. The LSSD contactors cannot be extended with auxiliary contacts or contact blocks. Two single-pole auxiliary contacts can be fitted to the LSSO contactors.

FUNCTION

LSS contactors have a low power consumption, an extended operating range of the magnetic coil and an integrated surge suppressor for damping opening surges. TECHNICAL SPECIFICATIONS

All technical specifications not mentioned in the table below are identical to those of the LSDD and LSDO contactors for switching motors. The LSSD contactors cannot be extended with auxiliary contacts or contact blocks. Two single-pole auxiliary contacts LSZODO10/D001 can be fitted to the LSSO contactor (see Accessories).
General data - Auxiliary Contactors LSSD, LSSO

Type			LSSO...H
Size		00	0
General data			
Mechanical endurance	Operating cycles	30 million	10 million
Safe isolation between the coil and the main contacts acc. to EN 60947-1, Appendix N	V		
Control Magnetic coil operating range			
Power consumption of the magnetic coil (for cold coil)			
Closing = closed			
at $\mathrm{U}_{5}=17 \mathrm{~V}$	W	1,2	2,1
at $\mathrm{U}_{5}=24 \mathrm{~V}$	W	2,3	4,2
at $\mathrm{U}_{\mathrm{s}}=30 \mathrm{~V}$	W	3,6	6,6
Permissible residual current of the electronics (for \mathbf{O} signal)		$<10 \mathrm{~mA} \times\left(24 \mathrm{~V} / \mathrm{U}_{5}\right)$	$<6 \mathrm{~mA} \times\left(24 \mathrm{~V} / \mathrm{U}_{5}\right)$
Overvoltage configuration of the magnetic coil		With diode	With varistor
		\rightarrow	$-\underset{u}{-7}$
Operating times of the contactors for PLC-use			
- Closing - at 17 V			
- ON-delay NO	ms	40 ... 120	93 ... 270
- OFF-delay NC	ms	$30 . . .70$	83 ... 250
- at 24 V			
- ON-delay NO	ms	$30 . . .60$	64 ... 87
- OFF-delay NC	ms	$20 . . .40$	$55 . . .78$
- at 30V			
- ON-delay NO	ms	$20 . . .50$	$53 . . .64$
- OFF-delay NC	ms	$15 . . .30$	$45 . .56$
- Opening at $17 . . .30 \mathrm{~V}$			
- ON-delay NO	ms	7 ... 17	18 ... 19
- OFF-delay NC	ms	22 ... 30	24 ... 25

Accessories for LSD and LSH Contactors and Auxiliary Contactors

Operation

In the case of the versions for rated control supply voltages of 110 V and 230 V , either AC voltage or DC voltage can be applied on the line side, whereas the variant for 24 V is designed for DC operation only. A DC-operated contactor is connected to the output in accordance with the input voltage that is applied. The mean value of the OFF-delay is approximately 1.5 times the specified minimum time.
Surge Suppression
All LSD contactors and LSH auxiliary contactors can be retrofitted with RC elements or varistors for damping opening surges in the coil. Diodes or diode assemblies can be used. The surge suppressors are plugged onto the front of size 00 contactors. Space is provided for them next to a snap-on auxiliary contact block. With all size 0 to 3 contactors, varistors, RC elements and diode assemblies can be plugged on directly at the coil terminals, either on the top or underneath. With all size 0 to 3 contactors, varistors, RC elements and diode assemblies can be plugged on directly at the coil terminals, either on the top or underneath. The plug-in direction of the diodes and diode assemblies is determined by a coding device. Auxiliary contactors are supplied either without overvoltage damping or already fitted with a diode-assembly. According to the version. Note: The OFF-delay times of the NO contacts and the ON-delay times of the NC contacts increase if the contactor coils are damped against voltage peaks
Note: The OFF-delay times of the NO contacts and the ON-delay times of the NC contacts increase if the contactor coils are damped against voltage peaks (noise suppression diode 6 to 10 times; diode assemblies 2 to 6 times, varistor +2 to 5 ms).

Soldier Pin Adapter

The solder pin adapters can be used for all contactors of size 00 .
Technical Data

Capacitor Switching Contactors LSK

- Capacitor Contactors LSK

AC OPERATION

IEC 60947, EN 60947 (VDE 0660)
The contactors are suitable for use in any climate. They are finger-safe according to EN 50274 . The LSK capacitor contactors are special version of the size 00 to 3 ALEA contactors. The capacitors are precharged by means of the mounted leading NO contacts and resistors; only then do the main contacts close.
This prevents disturbances in the network and welding of the contactors. Only discharged capacitors are permitted to be switched on with capacitor contactors.
The auxiliary contact block which is snapped onto the capacitor contactor contains the three leading NO contacts and in the case of 00 one standard NC contact and in the case of 0 and 3 one standard NO contact, which is unassigned. Size 00 also contains another unassigned NO contact in the basic unit.
In addition, a 2-pole auxiliary contact block can be mounted laterally on the LSK3 capacitor contactors ($1 \mathrm{NO}+1 \mathrm{NC}$ versions); type LSZOD711. The fitting of auxiliary switches for LSKD and LSKO is not expandable. For the capacitor switching capacity of the basic LSD contactor version, see Technical specifications.

MOUNTING INSTRUCTIONS

In the area of capacitor switching contactors, difficulty inflammable and self-extinguishing materials may be used only, because abnormal temperatures within the area of the resistance spirals cannot be excluded.

TECHNICAL SPECIFICATIONS

All technical specifications not mentioned in the table below are identical to those of the LSDD contactors for size 00 , to those of the LSDO contactors for size 0 and to those of the LSD3 contactors for size 3.

Technical Specification - Electromechanical Contactors Series ALEA LS

Capacitor Switching Contactors LSK

Technical Data - Capacitor Contactors LSK

Type				LSK03213	LSK36213
Size			00	0	3
Capacitor rating at	230V, $50 / 60 \mathrm{~Hz}$	kvar	3 ... 7.5	3.5 ... 15	3.5 ... 30
rated power	$400 \mathrm{~V}, 50 / 60 \mathrm{~Hz}$	kvar	5 ... 12.5	6... 25	5... 50
(utilization category AC-6b)	$525 \mathrm{~V}, 50 / 60 \mathrm{~Hz}$	kvar	7.5 ... 15	7.8 ... 30	7.5 ... 60
	$690 \mathrm{~V}, 50 / 60 \mathrm{~Hz}$	kvar	10... 21	$10 . . .42$	10... 84
Auxiliary contacts mounted (unassigned)			$1 \mathrm{NO}+1 \mathrm{NC}$	1NO	
Auxiliary contacts mountable (lateral), not for sizes 00 and 0					$2 \mathrm{NC}+2 \mathrm{NO}$ or $1 \mathrm{NO}+1 \mathrm{NC}$
Magnetic coil operating range				$0.8 \ldots 1.1 \times \mathrm{U}$	
Max. switching frequency			180	100	
Electrical endurance		Operating cycles	>250000	> 150000	> 100000
Ambient temperature ${ }^{\circ} \mathrm{C}$				60	
Standards			IEC	47/DIN EN 60947 (VDE 0660)	
Short-circuit protection				1.6 ... 2.2×1 e	
Conductor cross-sections (1 or 2 conductors can be connected)					
Main conductors			Screw terminals		
- Solid		mm^{2}	$2 \times(0.5$... 1.5); $2 \times(0.75$... 2.5)	$2 \times(1 . . .2 .5) ; 2 \times(2.5$... 6)	-
			acc. to IEC 60947; max. $2 \times(1 . . .4)$	acc. to IEC 60947; max. $1 \times 10^{1)}$	-
- Finely stranded with end sleeve			$2 \times(0.5$... 1.5); $2 \times(0.75$... 2.5)	$2 \times(1 . . .2 .5) ; 2 \times(2.5 . . .6)^{1)}$	-
- AWG cables					-
- solid		AWG	$2 \times(20 . . .16)$	$2 \times(16 . . .12)$	-
- solid or stranded		AWG	$2 \times(18 \ldots 14)$	$2 \times(14 \ldots 10)$	-
- stranded		AWG	1×12	1×8	-
- Terminal screws			M3	M4 (Pozidriv Gr. 2)	-
- tightening torque		Nm	0.8 ... 1.2	2 ... 2.5	-
		lb.in	7 ... 10.3	$18 . .22$	-
Coil voltage	0.85-1.1 x		$230 \mathrm{VAC} ; 50 / 60 \mathrm{~Hz}$	$230 \mathrm{VAC} ; 50 / 60 \mathrm{~Hz}$	230VAC; $50 / 60 \mathrm{~Hz}$

Capacitor Switching Contactors LSK

- Conductor Cross Sections - Capacitor Contactors LSK

Type			LSKD17B3	LSK03213	LSK36213
Size			00	0	3
(1 or 2 conductors can be connected)					
	Main conductors:		Screw terminals		
Front clamping point connected	with box terminal				
	- Finely stranded with end sleeve	mm^{2}	-	-	2.5 ... 35
	- Finely stranded without end sleeve	mm^{2}	-	-	4 ... 50
	- Solid	mm^{2}	-	-	2.5 ... 16
	- Stranded	mm^{2}	-	-	4 ... 70
	- Ribbon cable conductors (number x width x thickness)	mm^{2}	-	-	$6 \times 9 \times 0.8$
	- AWG cables, solid or stranded	AWG	-	-	10 ... $2 / 0$
Rear clamping point connected	- Finely stranded with end sleeve	mm^{2}	-	-	2.5 ... 50
	- Finely stranded without end sleeve	mm^{2}	-	-	$10 . . .50$
	- Solid	mm^{2}	-	-	2.5 ... 16
	- Stranded	mm^{2}	-	-	10 ... 70
	thickness)	mm^{2}	-	-	$6 \times 9 \times 0.8$
	- AWG cables, solid or stranded	AWG	-	-	$10 . . .2 / 0$
Both clamping points connected	- Finely stranded with end sleeve	mm^{2}	-	-	max. 2×35
	- Finely stranded without end sleeve	mm^{2}	-	-	max. 2×35
	- Solid	mm^{2}	-	-	max. 2×16
	- Stranded	mm ${ }^{2}$	-	-	max. 2×50
	- Ribbon cable conductors (number x width x thickness)	mm^{2}	-	-	$2 \times(6 \times 9 \times 0.8)$
	- AWG cables, solid or stranded	AWG	-	-	$2 \times(10 \ldots 1 / 0)$
	- Terminal screw		-	-	M6 (Inbus, SW 4)
	- tightening torque	Nm	-	-	4 ... 6
		lb.in			$36 . . .53$
Connection for drilled copper bars Without box terminal with cable lugs ${ }^{2 l}$	Max. width	mm	-	-	10
	- Finely stranded with cable lug	mm^{2}	-	-	$10 . . .50^{31}$
	- Stranded with cable lug	mm^{2}	-	-	$10 . . .70^{31}$
(1 or 2 conductors can be connected)	- AWG cables, solid or stranded	AWG	-	-	7 ... 1/0
	Auxiliary conductors:				
	- Solid	mm^{2}	$2 \times(0.5 \ldots 1.5)^{4}$;	$2 \times(0.5 . . .1 .5)^{4}$;	
			$2 \times(0.75 \ldots 2.5)^{4}$	$2 \times(0.75 \text {... } 2.5)^{4}$ acc. to IEC 60947;	
			acc. to IEC 60947;	max. $2 \times(0.75$... 4)	
			max. $2 \times(1 \ldots 4)$		
	Finely stranded with end sleeve	mm^{2}	$2 \times(0.5 \ldots 1.5)^{4}$;		
			$2 \times(0.75 \ldots 2.5)^{4}$		
	- AWG cables, solid or stranded	AWG	$2 \times(20 . . .16)^{4}$;		
			$2 \times(18 \ldots 14)^{4} ; 1 \times 12$		
	- Terminal screw		M3		
	- fightening torque	Nm	0.8 ... 1.2		
		lb.in	7 ... 10.3		
Cage Clamp terminals (on request)	Auxiliary conductors:				
	- Solid	mm^{2}	$2 \times(0.25 \ldots 2.5)$		
	- Finely stranded with end sleeve	mm^{2}	$2 \times(0.25 \ldots 1.5)$		
	- Finely stranded without end sleeve	mm^{2}	$2 \times(0.25 \ldots . .5)$		
	- AWG cables, solid or stranded	AWG	$2 \times(24 . . .14)$		

[^30]
Reversing Contactor Combinations

The LSW reversing contactor assemblies can be ordered as follows:

Sizes 00 to 3

Fully wired and tested, with mechanical and electrical interlock. For assemblies with AC operation and $50 / 60 \mathrm{~Hz}$, a dead interval of 50 ms must be provided when used with voltages $\geq 500 \mathrm{~V}$; a dead interval of 30 ms is recommend for use with voltages $\geq 400 \mathrm{~V}$. These dead times do not apply to assemblies with DC operation.

Sizes 00 to 12

As components for self-assembly.
In addition, there are accessories (auxiliary switch blocks, surge suppressors, etc.), which have to be ordered separately.
For overload relays for motor protection, see "Thermal overload relays". The LSW contactor assemblies have screw terminals and are suitable for screwing or snapping onto 35 mm standard mounting rails.

Complete units up to size 3

The fully wired reversing contactor assemblies are suitable for use in any climate. They are finger-safe according to EN 50274 . The contactor assemblies consist of 2 contactors with the same power, with one NC contact in the basic unit. The contactors are mechanically and electrically interlocked (NC contact interlock).
For motor protection, LST thermal overload relays for direct mounting or stand-alone installation must be ordered separately.
Rated Data AC-2 and AC-3 at AC 50 Hz 400 V

Rating kW	Operational current $I_{\text {e }}$ A	Size	Order No. Contactor	Mechanical interlock ${ }^{2)}$	Wiring set	Fully wired and tested contactor assemblies
3	7	00	LSDD07	-	LSZDW001 ${ }^{51}$	LSWD0733
4	9		LSDD09			LSWD0933
5,5	12		LSDD12			LSWD1233
5,5	12	0	LSD012	LSZOW002	LSZOW001 ${ }^{6 /}$	LSW01233
7,5	17		LSD017			LSW01733
11	25		LSD025			LSW02533
15	32	2	LSD232	LSZOW002	LSZ2W001 ${ }^{71}$	LSW23233
18,5	40		LSD240			LSW24033
22	50		LSD250			LSW25033
30	65	3	LSD365	LSZOW002	LSZ3W001 ${ }^{7}$	LSW36533
37	80		LSD380			LSW38033
45	95		LSD395			LSW39533

2) Laterally mountable with two auxiliary contacts, one for each contactor.
3) Wiring set contains: mechanical interlock; connecting clips for 2 contactors; wiring modules on the top and bottom.
4) Wiring set contains: wiring modules on the top and bottom.
5) Wiring set contains: 2 connecting clips for contactors; wiring modules on the top and bottom.

COMPONENTS FOR CUSTOMER ASSEMBLY

For customer assembly of reversing contactor assemblies size 6,10 and 12 , following components are available.
Contactors, thermal overload relays, the mechanical interlock (as of size 0) and - for momentary-contact operation auxiliary contact blocks for latching must be ordered separately.

DESCRIPTION	Order No.
Wiring set for size 6	LSZ6WOO2
Wiring set for size 10	LSZEW001
Wiring set for size 12	LSZGW001
Mechanical interlock for size $6,10,12$	LSZ6W001

The operating times of the individual LSD contactors are rated in such a way that no overlapping of the contact making and the arcing time between two contactors can occur on reversing, providing they are interlocked by way of their auxiliary switches (NC contact interlock) and the mechanical interlock. For assemblies with AC operation and $50 / 60 \mathrm{~Hz}$, a dead interval of 50 ms must be provided when used with voltages $\geq 500 \mathrm{~V}$. This dead times does not apply to assemblies with DC operation. The operating times of the individual contactors are not affected by the mechanical interlock. The following points should be noted:

Size 00

- For maintained-contact operation:

Use contactors with an NC contact in the basic unit for the electrical interlock.

- For momentary-contact operation:

Use contactors with an NC contact in the basic unit for the electrical interlock; in addition, an auxiliary contact block with at least one NO contact for latching is required per contactor.

Sizes $\mathbf{0}$ to $\mathbf{3}$

- For maintained-contact operation:

The contactors have no auxiliary contact in the basic unit; NC contacts for the electrical interlock are therefore integrated in the mechanical interlock that can be mounted on the side of contactor (one contact each for the left and right-hand contactors).

- For momentary-contact operation:

Electrical interlock as for maintained-contact operation; for the purpose of latching an auxiliary contact with an NO contact is additionally required for each contactor. This contact can be snapped onto the top of the contactors. Alternatively, auxiliary contact blocks mounted on the side can be used; they must be fitted onto the outside of each contactor.

SURGE SUPPRESSION

Sizes 00 to 3

All contactor assemblies can be fitted with RC elements or varistors for damping opening surges in the coil.
As with the individual contactors, the surge suppressors can either be plugged onto the top of the contactors (size 00) or fitted onto the coil terminals on the top or bottom (size 0 to 3).

TECHNICAL SPECIFICATIONS

The technical specifications are identical to those of the LSD .. contactors.
The CSA and UL approvals only apply to the complete contactor assemblies and not to the individual parts for customer assembly.

Star-Delta Contactor Combinations

These LSY contactor assemblies for wye-delta starting are designed for standard applications.
Note:
Contactor assemblies for wye-delta starting in special applications such as very heavy starting or wye-delta starting of special motors must be customized.
Help with designing such special applications is available.

Complete units up to size 2

The LSY contactor assemblies for wye-delta starting can be ordered as follows:

Sizes 00 to 2

Fully wired and tested, with electrical interlock, dead interval of up to 10 s on reversing (size 00 with electrical and mechanical interlocks)
A dead interval of 50 ms on reversing is already integrated in the time relay function. There is also a range of accessories (auxiliary contact blocks, surge suppressors, etc.) that must be ordered separately.
For overload relays for motor protection, see "Thermal Overload Relays"
The LSY contactor assemblies have screw terminals and are suitable for screwing or snapping onto 35 mm standard mounting rails. Fully wired and tested LSY contactor assemblies have one unassigned NO contact which is mounted onto the front of the K3 delta contactor. A timing relay is mounted onto the right side of the assemblies.
Rated Data at AC 50 Hz 400 V

Rating kW	Operational current $I_{\text {e }}$ A	Motor current A	Size	Line/delta contactor	Star contactor	WYE-Delta timer	Order No.
up to 7.5	17	17	00-00-00	LSDD 1213	LSDD0713	LSZD0101	LSYD1733
up to 15	32	34	0-0-0	LSD02533	LSD01213	LSZD0101	LSY03233
up to 22	50	43	2-2-0	LSD23233	LSD02533	LSZD0101	LSY25033

COMPONENTS FOR CUSTOMER ASSEMBLY
Installation kits with wiring modules and, if necessary, mechanical connectors are available for contactor assemblies for wyedelta starting. Contactors, overload relays, wye-delta timers, auxiliary contacts for electrical interlock - if required also feeder terminals, mechanical interlocks (exception: In the case of the wiring set for size 00 contactor assemblies the mechanical interlock between the delta contactor and the star contactor is included in the kit) and base plates - must be ordered separately.
The wiring sets for sizes 00 and 0 contain the top and bottom main conducting path connections between the line and delta contactors (top) and between the delta and star contactors (bottom). In the case of sizes 2 to 12 only the bottom main conducting path connection between the delta and star contactors is included in the wiring module, owing to the larger conductor cross-section at the infeed.

DESCRIPTION	Order No.
Wiring set for Y-D assemblies size 0-0-0, including wiring, connection clips and star jumper ${ }^{\text {I/ }}$	LSZOYOO1
Parallel connector, star jumper 3-pole for contactors size $0^{2 /}$	LSZOYOO2
Base-plate for YD-assemblies, size 2-2-0, for side arranged YD relay ${ }^{3 /}$	LSZ2Y001
Wiring set for Y-D assemblies size 2-2-0, including wiring bottom and star jumper	LSZ2Y004
Parallel connector, star jumper 3-pole for contactors size 2	LSZ2Y005
Star-Delta timer 20s	LSZD0101
Star-Delta timer 60s	LSZDO102
Wiring Set for YD-Assemblies size 00, including mechanical Interlock	LSZDY001
Star jumper 3-pole for LSDD size 00	LSZDY002
1) Wiring set contains: mechanical interlock, 3 connecting clips; wiring modules on the top (connection between line and delta contactor) and on the bottom (connection between delta and wyecontactor); star jumper. 2) Wiring set contains: 5 connecting clips; wiring modules on the top (connection between line and delta contactor) and on the bottom (connection between delta and wye-contactor); star jumper. 3) Wiring set includes the wiring at bottom between star and delta contactor and the star jumper.	

MOTOR PROTECTION

Thermal overload relays can be used for overload protection. The overload relay can be either mounted onto the line contactor or separately fitted.
It must be set to 0.58 times the rated motor current.

FUNCTION

Wye-delta starting can only be used either if the motor normally operates in a Δ connection or starts soffly or if the load torque during Y starting is low and does not increase sharply. On the Y step the motors can carry approximately 50% (class KL 16) or 30% (class KL 10) of their rated torque; The tightening torque is approximately $1 / 3$ of that during direct on-line starting. The starting current is approximately 2 to 2.7 times the rated motor current.
The changeover from Y to Δ must not be effected until the motor has run up to rated speed. Operating mechanisms which require this changeover to be performed earlier are unsuitable for wyedelta starting.
The ratings given in the table are only applicable to motors with a starting current ratio $\mathrm{IA} \leq 8.4 \times \mathrm{IN}$ and using wye-delta timing relayLSZD0101/LSZD0101 with a dead interval of approximately 50 ms .
SURGE SUPPRESSION

Sizes 00 to 3:

All contactor assemblies can be fitted with RC elements, varistors or diode assemblies for damping opening surges in the coil. As with the individual contactors, the surge suppressors can either be plugged onto the top of the contactors (size 00) or fitted onto the coil terminals on the top or bottom (size 0 to 3).

Sizes 6 to 12:

The contactors are fitted with varistors as standard.

Technical Specifications - Star-delta Contactor Combinations Series LSY

Star-Delta Contactor Combinations

Technical Specifications
Short-circuit protection with fuses for motor feeders with short-circuit currents up to 50 kA and 690 V . For Thermal overload relays see: Thermal Overload Relays.

Rating	Sizes of contactors K1-K3-K2	Rated motor current	Thermal overload relay	Setting range (the thermal overload relays must be set to 0.58 times the rated motor current)	Permissible back-up fuses for starters, comprising contactor assemblies and overload relays						
					Single or double infeed" Fuse links		LV HRC Operational class	listed fuses CLASS RK5/L	British Standard		
					LV HRC, DIAZED, NEOZED $\mathrm{gL} / \mathrm{gG}$ operational class Type of coordination		aM Type of coordination „2"		Fuses		
							BS88				
							Type of coordination				
					„1"	"2"		A	„1"	„2"	
kW			Type	A	A	A			A	A	A
5,5	00-00-00	12	LSTD0800	5.5 ... 8	35	20		10	30	35	20
7,5	00-00-00	16	LSTD 1000	7... 10	35	20	16	40	35	20	
11	0-0-0	22	LST01600	$11 . .16$	63	25	20	60	63	25	
15	0-0-0	29	LST02000	$14 . . .20$	100	35	20	80	100	35	
18,5	0-0-0	35	LST02500	$20 . . .25$	100	35	20	100	100	35	
22	2-2-0	41	LST23200	22 ... 32	125	63	35	125	125	63	

1) The maximum rated motor current must not be exceeded.

Star-Delta Contactor Combinations

- Technical Specifications

overload relay

1) Short-circuit protection with overload relays, see Thermal Overload Relays.
2) $\mathrm{Up} \mathrm{to}_{\mathrm{k}}<0.5 \mathrm{kA}$; $\leq 260 \mathrm{~V}$
3) For Circuit diagram see chapter "Star-Delta Contactor combinations"

Technical Specification - Electromechanical Contactors Series CUBICO

Electromechanical Contactors Series CUBICO Mini, 3-pole

Electric Life Curve AC3

1) Electric life curve
2) Rated current (A)
3) Rated outputs of three-phase motors AC-3 $(50 \mathrm{~Hz})$

Electric Life Curve AC4

1) Electric life curve
2) Rated current (A)

Electromechanical Contactors Series CUBICO Mini, 3-poleTechnical Specifications

			LZDM06	LZDM09	LZDM12
Standard			IEC/EN 60947-4-1		
Rated insulation voltage			690VAC		
Rated frequency			$50 / 60 \mathrm{~Hz}$		
Rated impulse withstand voltage			6 kV		
Overvoltage category			III		
Rated current AC1			20A	20A	20A
Rated current AC3		230 V	6A	9A	12A
		400 V	6A	9A	12A
		415 V	6A	9A	12A
		690 V	3.8A	4.9A	4.9A
Rated current AC4		230 V	6A	9A	12A
		400 V	6A	9A	9A
		415 V	6A	9A	9A
		690 V	3.8A	4.9A	4.9A
Rated making capacity			$10 \times \mathrm{I}_{\mathrm{e}}(\mathrm{AC} 3) / 12 \times \mathrm{I}_{\mathrm{e}}$ (AC4)		
Rated breaking capacity			$8 \times 1{ }_{\text {e }}(\mathrm{AC} 3) / 10 \times \mathrm{I}_{\mathrm{e}}(\mathrm{AC} 4)$		
Short-time withstand current 10s			48A	72A	96A
Rated power AC3		230 V	1.5kW	2.2kW	3kW
		400 V	2.2kW	4kW	5.5 kW
		415 V	2.2kW	4kW	5.5 kW
		690 V	3kW	4kW	4kW
Operating frequency		AC3	1.200 operations/h		
		AC4	300 operations/h		
Electrical lifetime		AC3	1.200.000 operations		
Mechanical lifetime			10.000 .000 operations		
Configuration of main contacts		3-pole	3 NO	3 NO	3 NO
Protection degree			IP20	IP20	IP20
Ambient air temperature			-5 up to $+40^{\circ} \mathrm{C}$	-5 up to $+40^{\circ} \mathrm{C}$	-5 up to $+40^{\circ} \mathrm{C}$
Storage temperature			-25 up to $+55^{\circ} \mathrm{C}$	-25 up to $+55^{\circ} \mathrm{C}$	-25 up to $+55^{\circ} \mathrm{C}$
Correction coefficient		$40^{\circ} \mathrm{C}$	1	1	1
		$50^{\circ} \mathrm{C}$	0,875	0,875	0,875
		$60^{\circ} \mathrm{C}$	0,75	0,75	0,75
		$70^{\circ} \mathrm{C}$	0,625	0,625	0,625
Altitude			2000 m	2000m	2000m
Atmosphere conditions			50% humidity at $+40^{\circ} \mathrm{C}$		
Installation position			horizontal and vertical $+/-22,5^{\circ}$		
Coil voltage		Us	24VAC, 230VAC or 24VDC		
Coil acting range		attraction	85\%-110\% Us	85\%-110\% Us	85\%-110\% Us
		release	AC: $20 \%-70 \%$ Us	AC: $20 \%-70 \%$ Us	AC: $20 \%-70 \%$ Us
			DC: $10 \%-60 \%$ Us	DC: $10 \%-60 \%$ Us	DC: $10 \%-60 \%$ Us
Coil average power		start	40VA	40VA	40VA
		holding	7VA	7VA	7VA
Heat wastage			4 W	4 W	4 W
Main contact action time		close	10-18ms	$10-18 \mathrm{~ms}$	10-18ms
		disconnection	4-16ms	$4-16 \mathrm{~ms}$	4-16ms
Terminal capacity of main circuit	flexible with end sleeve	$1 \times$	1-2.5mm ${ }^{2}$	1-2.5mm ${ }^{2}$	1-2.5mm ${ }^{2}$
		2 x	1-2.5mm ${ }^{2}$	1-2.5mm ${ }^{2}$	1-2.5mm ${ }^{2}$
	rigid cable	1x	1-2.5mm ${ }^{2}$	$1-2.5 \mathrm{~mm}^{2}$	$1-2.5 \mathrm{~mm}^{2}$
		2x	1-2.5mm ${ }^{2}$	1-2.5mm ${ }^{\text {a }}$	1-2.5mm ${ }^{\text {a }}$
	screw size		M3	M3	M3
	torque		0.8 Nm	0.8 Nm	0.8 Nm
Terminal capacity of control circuit	flexible with end sleeve	1x	$1-2.5 \mathrm{~mm}^{2}$	1-2.5mm ${ }^{2}$	1-2.5mm ${ }^{2}$
		$2 \times$	1-2.5mm ${ }^{2}$	1-2.5mm ${ }^{2}$	$1-2.5 \mathrm{~mm}^{2}$
	rigid cable	1x	$1-2.5 \mathrm{~mm}^{2}$	$\begin{aligned} & 1-2.5 \mathrm{~mm}^{2} \\ & 1-2.5 \mathrm{~mm}^{2} \end{aligned}$	$1-2.5 \mathrm{~mm}^{2}$
		2 x	1-2.5mm ${ }^{2}$		1-2.5mm ${ }^{2}$
	screw size		M3	M3	M3
	torque		0.8 Nm	0.8 Nm	0.8 Nm
Terminal capacity of auxiliary contacts	flexible with end sleeve	$1 \times$	1-2.5mm ${ }^{2}$	1-2.5mm ${ }^{2}$	1-2.5mm ${ }^{2}$
		$2 \times$	1-2.5mm ${ }^{2}$	1-2.5mm ${ }^{2}$	$1-2.5 \mathrm{~mm}^{2}$
	rigid cable	1x	$1-2.5 \mathrm{~mm}^{2}$	$1-2.5 \mathrm{~mm}^{2}$	$1-2.5 \mathrm{~mm}^{2}$
		$2 \times$	1-2.5mm ${ }^{2}$	1-2.5mm ${ }^{2}$	1-2.5mm ${ }^{2}$
	screw size		M3	M3	M3
	torque		0.8 Nm	0.8 Nm	0.8 Nm

Technical Specification - Electromechanical Contactors Series CUBICO

Electromechanical Contactors Series CUBICO Mini, 3-pole

- Application in Illumination Circuit

W	A	$\mu \mathrm{F}$	LZDM06	LZDM09	LZDM12
			max. number of lamps per phase		
Incandescent lamp					
60	0,27	-	35	35	35
75	0,34	-	28	28	28
100	0,45	-	21	21	21
150	0,68	-	14	14	14
200	0,71	-	10	10	10
300	1,4	-	6	6	6
500	2,3	-	4	4	4
750	3,4	-	2	2	2
1000	4,6	-	2	2	2
Single fluorescent lamp with starter, without compensation					
20	0,39	-	24	24	24
40	0,45	-	21	21	21
64	0,7	-	12	12	12
80	0,8	-	12	12	12
110	1,15	-	8	8	8
Single fluorescent lamp with starter, parallel compensation					
20	0,18	5	83	83	83
40	0,26	5	58	58	58
65	0,42	7	35	35	35
80	0,52	7	28	28	28
100	0,6	16	23	23	23
110	0,7	18	21	21	21

Fluorescent lamps in dual mounting with starter, without compensation

2×20	$2 \times 0,22$	-	21	21	21
2×40	$2 \times 0,41$	-	11	11	7
2×65	$2 \times 0,67$	-	7	7	7
2×80	$2 \times 0,82$	-	5	5	5
2×110	$2 \times 1,10$	-	4	4	4

2×20	$2 \times 0,13$	-	36	36	36
2×40	$2 \times 0,24$	-	20	20	20
2×65	$2 \times 0,39$	-	12	12	12
2×80	$2 \times 0,48$	-	10	10	10
2×110	$2 \times 0,65$	-	7	7	7
Single fluorescent lamp without starter, without compensation					
20	0,43	-	22	22	22
40	0,55	-	17	17	17
65	0,8	-	12	12	12
80	0,95	-	10	10	10
110	0,4	-	6	6	6
Single fluorescent lamp with starter, with parallel compensation					
20	0,19	5	50	50	50
40	0,29	5	33	33	33
65	0,46	7	20	20	20
80	0,57	7	16	16	16
110	0,79	16	-	-	-
Fluorescent lamp without starter, without compensation					
2×20	$2 \times 0,25$	-	19	19	19
2×40	$2 \times 0,47$	-	10	10	10
2×65	$2 \times 0,76$	-	6	6	6
2×80	$2 \times 0,93$	-	5	5	5
2×110	$2 \times 1,3$	-	3	3	3

Electromechanical Contactors Series CUBICO Mini, 3-pole
Application in Illumination Circuit

W	A	$\mu \mathrm{F}$	LZDM06	LZDM09	LZDM12
			max. number of lamps per phase		

Fluorescent lamp in dual mounting without starter, with compensation in series

2×20	$2 \times 0,15$	-	34	34	34
2×40	$2 \times 0,26$	-	18	18	18
2×65	$2 \times 0,43$	-	11	9	11
2×80	$2 \times 0,53$	-	9	6	9
2×110	$2 \times 0,72$	-	6	6	

Low press sodium vapor lamps with parallel compensation					
35	0,3	17	-	-	-
55	0,4	17	-	-	-
90	0,6	25	-	-	-
135	0,9	36	-	-	-
150	1	36	-	-	-
180	1,2	36	-	-	-
200	1,3	36	-	-	-

Low press sodium vapor lamps without compensation

150	1,9	-	4	4	4
250	3,2	-	2	2	2
400	5	-	1	-	1
700	8,8	-	-	-	-
1000	12,4	-	-	-	

Low press sodium vapor lamps with parallel compensation

150	0,84	20	-	-	-
250	1,4	32	-	-	-
400	2,2	48	-	-	-
700	3,6	96	-	-	-
1000	5,5	120	-	-	-

High press hydrargyrum lamps without compensation

High press hydrargyrum lamps without compensation					
50	0,54	-	14	14	14
80	0,81	-	9	9	9
125	1,2	-	6	3	6
250	2,3	-	3	1	3
400	4,1	-	1	-	1
700	6,8	-	-	-	-
1000	9,9	-	-	-	

High press hydrargyrum lamps with parallel compensation

50	0,3	10	-	-	-
80	0,45	10	-	-	-
125	0,67	10	-	-	-
250	1,3	18	-	-	-
400	2,3	25	-	-	-
700	3,8	40	-	-	-
1000	5,5	60	-	-	-

Technical Specification - Electromechanical Contactors Series CUBICO

Electromechanical Contactors Series CUBICO Classic, 3-pole
Electric Life Curve AC3

1) Electric life curve
2) Rated current (A)
3) Rated outputs of three-phase motors $\mathrm{AC}-3(50 \mathrm{~Hz})$

Electric Life Curve AC4

1) Electric life curve
2) Rated current (A)

Electromechanical Contactors Series CUBICO Classic, 3-pole

- Technical Specifications

Technical Specification - Electromechanical Contactors Series CUBICO

Electromechanical Contactors Series CUBICO Classic, 3-pole

- Application in Illumination Circuit

W	A	$\mu \mathrm{F}$	LZDC09	LZDC12	LZDC18	LZDC25	LZDC32	LZDC38
			max. number of lamps per phase					
Incandescent lamp								
60	0,27	-	59	59	77	92	129	129
75	0,34	-	47	47	61	73	103	103
100	0,45	-	35	35	46	55	77	77
150	0,68	-	23	23	30	36	51	51
200	0,71	-	17	17	23	27	38	38
300	1,4	-	11	11	15	18	25	25
500	2,3	-	7	7	8	11	15	15
750	3,4	-	4	4	6	7	10	10
1000	4,6	-	3	3	4	5	7	7

Single fluorescent lamp with starter, without compensation

20	0,39	-	41	41	53	66	89	89
40	0,45	-	35	35	46	57	77	77
64	0,7	-	22	22	30	37	50	43
80	0,8	-	20	20	26	32	43	
110	1,15	-	12	12	15	20	26	26

Single fluorescent lamp with starter, parallel compensation

20	0,18	5	94	94	105	155	215	215
40	0,26	5	65	65	75	107	150	150
65	0,42	7	40	40	45	66	92	
80	0,52	7	32	32	36	53	74	
100	0,6	16	26	26	29	43	59	59
110	0,7	18	24	24	27	40	55	55

Fluorescent lamps in dual mounting with starter, without compensation

2×20	$2 \times 0,22$	-	36	36	46	58	78	
2×40	$2 \times 0,41$	-	18	18	24	30	42	
2×65	$2 \times 0,67$	-	10	10	14	18	26	
2×80	$2 \times 0,82$	-	8	8	12	14	26	
2×110	$2 \times 1,10$	-	6	6	8	10	14	20

Fluorescent lamps in dual mounting with starter, with compensation in series								
2×20	$2 \times 0,13$	-	60	60	80	100	134	134
2×40	$2 \times 0,24$	-	32	32	42	54	72	72
2×65	$2 \times 0,39$	-	20	20	26	32	44	
2×80	$2 \times 0,48$	-	16	16	20	26	36	
2×110	$2 \times 0,65$	-	12	12	16	20	26	36

Single fluorescent lamp without starter, without compensation

20	0,43	-	37	37	48	60	97	97
40	0,55	-	29	29	38	47	63	63
65	0,8	-	20	20	26	32	43	
80	0,95	-	16	16	22	27	36	
110	0,4	-	11	11	15	18	25	26

Single fluorescent lamp with starter, with parallel compensation

20	0,19	5	84	84	110	136	184	184
40	0,29	5	55	55	72	89	101	101
65	0,46	7	34	34	45	56	76	76
80	0,57	7	28	28	36	45	61	61
110	0,79	16	20	20	26	32	44	44
Fluorescent lamp without starter, without compensation								
2×20	$2 \times 0,25$	-	32	32	42	52	70	70
2×40	$2 \times 0,47$	-	16	16	22	26	36	36
2×65	$2 \times 0,76$	-	10	10	12	16	22	22
2×80	$2 \times 0,93$	-	8	8	10	12	18	18
2×110	$2 \times 1,3$	-	6	6	8	10	12	12

Electromechanical Contactors Series CUBICO Classic, 3-pole

- Application in Illumination Circuit

W	A	$\mu \mathrm{F}$	LZDC09	LZDC12	LZDC18	LZDC25	LZDC32	LZDC38
			max. number of lamps per phase					

Fluorescent lamp in dual mounting without starter, with compensation in series

2×20	$2 \times 0,15$	-	56	56	74	92	124	
2×40	$2 \times 0,26$	-	30	30	40	50	66	
2×65	$2 \times 0,43$	-	18	18	24	30	40	66
2×80	$2 \times 0,53$	-	14	14	18	24	32	
2×110	$2 \times 0,72$	-	10	10	14	18	32	

Low press sodium vapor lamps with parallel compensation

35	0,3	17	40	40	50	63	86	
55	0,4	17	30	30	37	47	65	
90	0,6	25	-	-	25	36	43	
135	0,9	36	-	-	-	21	28	
150	1	36	-	-	-	19	26	
180	1,2	36	-	-	-	15	28	
200	1,3	36	-	-	-	14	26	

Low press sodium vapor lamps without compensation

150	1,9	-	6	6	7	10	13	13
250	3,2	-	3	3	4	5	8	8
400	5	-	2	2	3	3	5	
700	8,8	-	-	-	2	2	2	
1000	12,4	-	-	-	1	1	2	

Low press sodium vapor lamps with parallel compensation

150	0,84	20	-	-	17	22	30	30
250	1,4	32	-	-	-	13	18	
400	2,2	48	-	-	-	8	18	
700	3,6	96	-	-	-	-	11	
1000	5,5	120	-	-	-	-	6	

High press hydrargyrum lamps without compensation

50	0,54	-	22	22	27	35	48	
80	0,81	-	14	14	18	23	38	
125	1,2	-	9	9	12	15	21	
250	2,3	-	5	5	6	8	11	
400	4,1	-	2	2	3	4	11	
700	6,8	-	1	1	2	2	6	
1000	9,9	-	1	1	1	1	3	2

High press hydrargyrum lamps with parallel compensation

| 50 | 0,3 | 10 | 40 | 40 | 50 | 63 | 86 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 80 | 0,45 | 10 | 26 | 26 | 33 | 42 | 57 |
| 125 | 0,67 | 10 | 17 | 17 | 22 | 28 | 38 |
| 250 | 1,3 | 18 | 9 | 9 | 11 | 14 | 20 |
| 400 | 2,3 | 25 | - | - | 6 | 8 | 11 |
| 700 | 3,8 | 40 | - | - | - | 5 | 20 |
| 1000 | 5,5 | 60 | - | - | - | 3 | 11 |

Thermal Overload Relays

Motor Protection Relays Series LA, U12/16E...K3

Thermal Overload Relays LST, Size 0

Thermal Overload Relays LST, Size 3

Thermal Overload Relays LST, Size 00

Thermal Overload Relays LST, Size 2

Thermal Overload Relays Series CUBICO

Thermal Overload Relays

\square Index
Motor Protection Relays Series LA Page 378
Thermal Overload Relays Series ALEA LST Page 380
Thermal Overload Relays Series CUBICO. Page 387
Technical Specification Page 391

Motor Protection Relays Series LA

Motor Protection Relays U 12/16E...K3 with Manual Reset for Contactors K(G)3-10 to K(G)3-22

- Schrack-Info
- For direct mounting onto contactors $K(G) 3-10$ up to $K(G) 3-22$
- Rated currents for direct starter of 0.12 A up to 30 A
- Rated currents for YD starter of 7A up to 52A
- Adjustment of relay: rated current of motor $\ln \times 0.58$
- Auxiliary contacts 1 NC and $1 \mathrm{NO}(95 / 96,97 / 98)$
- Reset by hand

Dimensions

Circuit and Connection Diagram

- Motor Protection Relays U12/16E...K3 with Manual Reset for Contactors K(G)3-10 to K(G)3-22

DESCRIPTION	TYPE NO.	AVAILABLE	ORDER NO.
0.12-0.18A U 12/16E...K3 Manual-Reset	U12/16 K3	- +000	LA300100K3
0.18-0.27A U12/16E...K3 Manual-Reset	U12/16 K3		LA300101 K3
0.27-0.4A U 12/16E...K3 Manual-Reset	U12/16 K3	- +00000	LA300102K3
0.4-0.6A U12/16E...K3 Manual-Reset	U12/16 K3	$+\infty=-\infty$	LA300103K3
0.6-0.9A U12/16E...K3 Manual-Reset	U12/16 K3	- $-\cdots 0$	LA300104K3
0.8-1.2A U12/16E...K3 Manual-Reset	U12/16 K3		LA300105K3
1.2-1.8A U 12/16E...K3 Manual-Reset	U12/16 K3	$+\infty=0$	LA300106K3
1.8-2.7A U12/16E...K3 Manual-Reset	U12/16 K3		LA300107K3
2.7-4A U12/16E...K3 Manual-Reset	U12/16 K3	$\begin{array}{lll} \hline-\infty 0 & 0 \\ \hline \end{array}$	LA300108K3
4-6A U12/16E...K3 Manual-Reset	U12/16 K3	$+\infty=0$	LA300109K3
6-9A U12/16E...K3 Manual-Reset	U12/16 K3	$+500-6$	LA300110K3
8-11A U12/16E...K3 Manual-Reset	U12/16 K3	$+\infty$	LA300111K3
10-14A U12/16E...K3 Manual-Reset	U12/16 K3		LA300112K3
13-18A U12/16E....K3 Manual-Reset	U12/16 K3	$+00 \div-6$	LA300113K3
17-23A U12/16E...K3 Manual-Reset	U12/16 K3	$+\infty=0$	LA300114K3
22-30A U 12/16E...K3 Manual-Reset	U12/16 K3	-000-9,	LA300126K3

Thermal Overload Relays Series ALEA LST

Thermal Overload Relays LST, Size 00

- Schrack-Info
- Thermal overload relais with phase failure monitoring for direct mounting onto contactors of size 00
- Seperate mouting can be realised by "stand alone holder" LSZDTEO1
- Devices are equipped with potential-free auxiliary contact $1 \mathrm{NO}+1 \mathrm{NC}$, manual- and automaticRESET, display of operating state, TEST-function, STOP-button and rated current adjusting knob with sealable cover. The terminals of contactors auxiliary contact $14 / 22$ as well as contactors terminal (coil) A2 are connected through the device

Dimensions

1) For mounting on TH35-7,5 standard mounting rail according to EN 60715

Circuit and Connection Diagram - LSTD

- Thermal Overload Relays LST, Size 00

Circuit and Connection Diagram - LSTD with LSZDTEO1

DESCRIPTION	TYPE NO.	AVAILABLE	ORDER NO.
Thermal Overload Relay 0.11-0.16A size 00	LSTD		LSTD0016
Thermal Overload Relay 0.14-0.2A size 00	LSTD		LSTD0020
Thermal Overload Relay 0.18-0.25A size 00	LSTD		LSTD0025
Thermal Overload Relay 0.22-0.32A size 00	LSTD		LSTD0032
Thermal Overload Relay 0.28-0.40A size 00	LSTD	$\begin{array}{lll} \hline-\infty & \infty & 0 \\ \hline \end{array}$	LSTD0040
Thermal Overload Relay 0.35-0.50A size 00	LSTD	-000-0,	LSTD0050
Thermal Overload Relay 0.45-0.63A size 00	LSTD		LSTD0063
Thermal Overload Relay 0.55-0.80A size 00	LSTD		LSTD0080
Thermal Overload Relay 0.70-1,00A size 00	LSTD	-000-n	LSTD0100
Thermal Overload Relay $0.9-1,25 \mathrm{~A}$ size 00	LSTD	$+\infty 000$	LSTD0125
Thermal Overload Relay 1.1-1.6A size 00	LSTD	-000-n	LSTD0160
Thermal Overload Relay 1.4-2.00 A size 00	LSTD		LSTD0200
Thermal Overload Relay 1.8-2.5A size 00	LSTD	$+\infty=\infty$	LSTD0250
Thermal Overload Relay 2.2-3.2A size 00	LSTD	- -0000	LSTD0320
Thermal Overload Relay 2.8-4.00 A size 00	LSTD	$-\infty 0-n$	LSTD0400
Thermal Overload Relay 3.5-5.00 A size 00	LSTD	$+\infty=-\infty$	LSTD0500
Thermal Overload Relay 4.5-6.3A size 00	LSTD	$+50<\pi$	LSTD0630
Thermal Overload Relay 5.5-8.00 A size 00	LSTD	$+000-6$	LSTD0800
Thermal Overload Relay 7.00-10.00 A size 00	LSTD		LSTD1000
Thermal Overload Relay 9.00-12.00 A size 00	LSTD		LSTD 1200

Thermal Overload Relays Series ALEA LST

Thermal Overload Relays LST, Size 0

- Schrack-Info
- Thermal overload relais with phase failure monitoring for direct mounting onto contactors of size 0
- Seperate mouting can be realised by "stand alone holder" LSZOTEO1
- Devices are equipped with potential-free auxiliary contact $1 \mathrm{NO}+1 \mathrm{NC}$, manual- and automaticRESET, display of operating state, TEST-function, STOP-button and rated current adjusting knob with sealable cover.

Dimensions

with terminal bracket for stand-alone installation

1) For mounting on TH35-7,5 standard mounting rail according to EN 60715

Circuit and Connection Diagram - LST2 with LST2TEO1

Thermal Overload Relays LST, Size 0

DESCRIPTION	TYPE NO.	AVAILABLE	ORDER NO.
Thermal Overload Relay 1.8-2.5A size 0	LSTO	- + - - -	LST00250
Thermal Overload Relay 2.2-3.2A size 0	LSTO	-00000]	LST00320
Thermal Overload Relay 2.8-4.0A size 0	LSTO	-500-6)	LST00400
Thermal Overload Relay 3.5-5.00 A size 0	LSTO	[-0000]	LST00500
Thermal Overload Relay 4.5-6.3 A size 0	LSTO	$+50 \cdots 6$	LST00630
Thermal Overload Relay 5.5-8.00 A size 0	LSTO	-000-9,	LST00800
Thermal Overload Relay 7.00-10.00A size 0	LSTO	$+\infty=0$	LST01000
Thermal Overload Relay 9-12.5A size 0	LSTO	- $-\cdots$	LST01250
Thermal Overload Relay 11-16A size 0	LSTO	$+\infty=\infty$	LST01600
Thermal Overload Relay 14-20A size 0	LSTO	$+\infty 00$	LST02000
Thermal Overload Relay 17-22A size 0	LSTO	$+50=0$	LST02200
Thermal Overload Relay 20-25A size 0	LSTO	$+\infty=0$	LST02500

Thermal Overload Relays Series ALEA LST

- Thermal Overload Relays LST, Size 2

Dimensions

with terminal bracket for stand-alone installation

1) For mounting on TH35-15 or TH75 standard mounting rail acc. to EN 60715

Circuit and Connection Diagram - LST2 with LST2TE01

DESCRIPTION	TYPE NO. AVAILABLE	
Thermal Overload Relay 5.5-8A size 2	ORDER NO.	
Thermal Overload Relay 7-10A size 2	LST2	LST2
Thermal Overload Relay 11-16A size 2	LST2	LST2
Thermal Overload Relay 14-20A size 2	LST2	LST2
Thermal Overload Relay 18-25A size 2	LST2	LST2
Thermal Overload Relay 22-32A size 2	LST21000	
Thermal Overload Relay 28-40A size 2	LST21600	
Thermal Overload Relay 36-45A size 2		
Thermal Overload Relay 40-50A size 2		

Stнраск

Thermal Overload Relays LST, Size 3

\square Schrack-Info

- Thermal overload relais with phase failure monitoring for direct mounting onto contactors of size 3
- Seperate mouting can be realised by "stand alone holder" LSZ3TEO1
- Devices are equipped with potential-free auxiliary contact $1 \mathrm{NO}+1 \mathrm{NC}$, manual- and automaticRESET, display of operating state, TEST-function, STOP-button and rated current adjusting knob with sealable cover.

Dimensions

with terminal bracket for stand-alone installation

1) For mounting on TH35-7,5 standard mounting rail according to EN 60715.

Circuit and Connection Diagram - LST3 with LST3TEO1

DESCRIPTION	TYPE NO. AVAILABLE	ORDER NO.
Thermal Overload Relay 18-25A size 3	LST3	LST3
Thermal Overload Relay 28-40A size 3	LST3	LST3
Thermal Overload Relay 36-50A size 3	LST3	LST3
Thermal Overload Relay 45-63A size 3	LST3	LST3400
Thermal Overload Relay 57-75A size 3	LST35000	
Thermal Overload Relay 70-90A size 3		
Thermal Overload Relay 80-100A size 3		

Thermal Overload Relays Series ALEA LST

- Holder for Stand-alone Installation of Thermal Overload Relays, Size 00 / 0 / 2 / 3

Schrack-Info

- For seperate mouting of Thermal overload relais LST to DIN-rail TS35 or TH35
- Stand alone holder size 3 (LSZ3TEO1) also can be mounted to DIN-rail TS75 or TH75

DESCRIPTION	TYPE NO.	AVAILABLE	ORDER NO.
Holder for LSTD size 00	LSZD	-700\%	LSZDTE01
Holder for LST Thermal overload relay, size 00	LSZO	[-000-9,	LSZOTE01
Holder for LST Thermal overload relay, size 2	LSZ2		LSZ2TE01
Holder for LST Thermal overload relay, size 3	LSZ3		LSZ3TE01

Thermal Overload Relays Series CUBICO Mini

- Schrack-Info

- Matching on contactor series CUBICO Mini
- Plug-in type
- Included auxiliary contacts
- Phase failure protection
- Manual and automatic reset
- Temperature compensation
- Tripping indicator
- Test- and Stop-button

Dimensions
LZTM

Connection Diagram

Circuit Diagram

Thermal Overload Relays Series CUBICO

Thermal Overload Relays Series CUBICO Mini

DESCRIPTION	AVAILABLE	ORDER NO.
Bimetal-version		
0,1-0,16A		LZTM0016
0,16-0,25A		LZTM0025
0,25-0,40A		LZTM0040
0,4-0,63A	- -1000	LZTM0063
0,63-1A	-00 $0-0$ 00 0	LZTM0100
1-1,6A	-000-0,	LZTM0160
1,6-2,5A	- -1000	LZTM0250
2,5-4A	-000-n	LZTM0400
4-6A		LZTM0600
5,5-8A	[-600-9,	LZTM0800
7-10A	-000-0.9	LZTM1000
9-13A	00000	LZTM1300

Thermal Overload Relays Series CUBICO Classic

- Schrack-Info

- Matching on contactor series CUBICO Classic
- Plug-in type
- Included auxiliary contacts
- Phase failure protection
- Manual and automatic reset
- Temperature compensation
- Tripping indicator
- Test- and Stop-button

Dimensions

Connection
Diagramm

Circuit Diagram

Thermal Overload Relays Series CUBICO

Thermal Overload Relays Series CUBICO Classic

DESCRIPTION	AVAILABLE	ORDER NO.
Bimetal-version		
0,16A-0,25A		LZTC0025
0,25-0,4A		LZTC0040
0,4-0,63A		LZTC0063
0,63-1A		LZTC0100
1-1,6A		LZTC0160
1,6-2,5A	- -2000	LZTC0250
2,5-4A	[-000]	LZTC0400
4-6A		LZTC0600
5,5-8A	-000-9,	LZTC0800
7-10A		LZTC1000
9-13A		LZTC1300
12-18A	-500-6)	LZTC1800
16-24A	- -2000	LZTC2400
23-32A	- -6000	LZTC3200
30-38A	-000-9,	LZTC3800

- Motor Protection Relays

Relays with Standard Tripping Characteristic

Tripping time depending on the multiple of the current setting from cold condition (tolerance $\pm 20 \%$ of the tripping time)							
Setting Range A		$\begin{gathered} I_{A} / I_{N} \\ 3 \end{gathered}$	$\begin{gathered} I_{A} / I_{N} \\ 4 \end{gathered}$	$\begin{gathered} I_{A} / I_{N} \\ 5 \end{gathered}$	$\begin{gathered} I_{A} / I_{N} \\ 6 \end{gathered}$	$\begin{gathered} \mathrm{I}_{\mathrm{A}} / \mathrm{I}_{\mathrm{N}} \\ \mathbf{7 , 2} \end{gathered}$	$\begin{gathered} I_{A} / I_{N} \\ 8 \end{gathered}$
U12/16E		s	5	s	s	5	5
0.12	0.18	18.5	10.4	7.2	5.5	4.3	3.6
0.18	- 0.27	16,7	9,8	6,5	5	4,1	3,5
0.27	0.4	19,4	12,1	8,2	5,9	4,9	4,2
0.4	0.6	18,7	11,2	8	6	4,9	4,1
0.6	0.9	19,7	11,6	8,1	6,1	4,9	4,2
0,8	1,2	22,9	13,6	10	7,3	6	5,2
1,2	- 1,8	22,2	13,2	9,2	7,6	5,8	5,3
1,8	2,7	23	13,7	9,3	7,6	5,7	5,1
2,7	4	24	14,4	9,9	7,8	5,9	5,1
4	6	24,7	13,8	9,9	7,3	5,6	4,8
6	9	22	13,4	8	5,7	4,1	3,5
8	11	17,4	9,2	5,9	4,1	2,9	2,3
10	14	26,4	12,9	7,6	5,2	3,5	2,8
13	18	14,7	7,7	4,8	3,2	2,3	1,7
17	23	16,2	8,4	5	3,6	2,4	1,8
22	30	16,8	8,5	5	3,6	2,3	1,9
U3/32		s	s	5	s	s	s
0.12	0.18	16,1	9,6	6,8	5,3	4,2	3,7
0.18	- 0.27	16,6	9,7	6,7	5,2	4,1	3,6
0.27	0.4	19,4	11,4	7,9	6,1	4,7	4,2
0.4	0.6	18,7	10,9	7,6	5,9	4,6	4
0.6	0.9	19,2	11,2	7,7	5,9	4,6	4,1
0,8	1,2	20,8	12,3	8,5	6,6	5,2	4,6
1,2	- 1,8	25,5	14,1	9,8	7,6	5,9	5,2
1,8	- 2,7	26,6	15,6	10,9	8,3	6,5	5,7
2,7	4	22,7	13,6	9,5	7,4	5,8	5,1
4	6	22,2	13,3	9,3	7,1	5,6	4,9
6	9	20,4	11,9	8,2	6,1	4,7	4
8	11	20,9	11,8	7,9	5,7	4,3	3,5
10	14	21,3	11,7	7,4	5,1	3,7	3
13	18	21,2	12,1	8	6,2	4,6	4,1
17	- 24	20,4	12	8,6	6,3	4,5	3,7
23	- 32	20,2	10,2	6,7	4,7	3,4	2,8
U3/42		5	5	5	s	5	s
10	14	21,8	11,4	7	5	3,7	2,8
14	20	22,4	11,2	6,7	4,5	3,2	2,4
20	- 28	21,8	10,8	6,5	4,5	3,3	2,5
28	42	25,2	13,3	8	5,5	4	3,1
U3/74		s	s	5	5	5	5
20	- 28	21,8	10,8	6,5	4,5	3,3	2,5
28	- 42	25,2	13,3	8	5,5	4	3,1
40	52	18,3	9,2	5,6	3,9	2,8	2,2
52	65	17,8	8,7	5,2	3,4	2,5	1,9
U85	-	5	s	s	s	s	5
60	- 90	19,5	13,5	11	10	9,5	8,5
80	120	18	11	10	9	8,5	8

Technical Specification - Motor Protection Relays Series LA

- Motor Protection Relays

■ Fuses for U3/32, U3/42, U3/74, U12/16E, U85, U180, U320 and U800

Type	Setting Range						Max. Fuse Size According to Coordination-type"(1" "ו"				Fuse UL	SCCR
	direct				Y Δ		quick	slow, gL (gG)	slow, gL (gG)	aM		
	A			A			$\frac{\mathbf{A}}{0,5^{21}}$	A	A	A	A	kA
$\begin{aligned} & \hline 12 / 16 E \\ & U 3 / 32 \end{aligned}$	0,12 - 0,18			A				0,5 ${ }^{21}$	25	-	15	
	0,18	-	0,27		-		1,0 ${ }^{21}$	1,0 ${ }^{21}$	25	-	15	5
	0,27	-	0,4		-		2	2	25	-	15	5
	0,4	-	0,6		-		2	2	25	-	15	5
	0,6	-	0,9		-		4	4	25	-	15	5
	0,8	-	1,2		-		4	4	25	2	15	5
	1,2	-	1,8		-		6	6	25	2	15	5
	1,8	-	2,7		-		10	10	25	4	15	5
	2,7	-	4		-		16	10	25	4	15	5
	4	-	6	7	-	10,5	20	16	25	6	15	5
	6	-	9	10,5	-	15,5	35	25	35	10	25	5
	8	-	11	14	-	19	35	25	35	16	30	5
	10	-	14	18	-	24	50	35	63	16	40	5
	13	-	18	23	-	31	50	35	63	20	50	5
	17	-	(23)24	30	-	(40)41	63	50	63	25	60	5
	(22)23	-	(30)32	(38)40	-	(52)55	80	63	80	35	70	5
U3/42	10	-	14	18	-	24	50	35	80	16	40	5
	14	-		24	-		63	50	80	25	60	5
	20	-	28	35	-	48	80	63	80	35	80	5
	28	-	42	48	-	73	100	80	150	50	110	5
U3/74	20	-	28	35	-	48	100	80	150	35	80	5
	28	-	42	48	-	73	125	100	150	50	110	5
	40	-	52	70	-	90	160	100	150	63	200	5
	52	-	65	90	-	112	160	125	150	80	250	10
	60	-	74	104	-	128	160	125	150	80	250	10
U85	60	-	90	104	-	156					300	10
	80	-	120	140							-	10
	all ranges all ranges						For short circuit protecting overload relays with current transformer use fuse according to the contactor of the combination.				-	-
							-	-				

1) Coordination-type according to IEC 947-4-1:
" 1 " Welding of contactor and damage of the thermal overload relay allowed.
"2" Light contact welding accepted. Thermal overload relay must not be damaged.
2) Miniature fuse

Terminal Screws

- Motor Protection Relays

Data according to IEC 947-4-1, IEC 947-5-1, VDE 0660, EN 60947-4-1, EN 60947-5-1

Type	U12/16 ${ }^{4)}$	U3/32	U3/42	U3/74	U85
Rated insulation voltage $\mathbf{U}_{\mathbf{i}}{ }^{11} \quad \mathrm{~V} \sim$	690	690	690	690	750
Permissible ambient temperature operation open ${ }^{\circ} \mathrm{C}$ storage					
Trip class	10A	10A	10A	20A	10A
Cable cross-section Main connector solid or stranded mm^{2} flexible mm^{2} flexible with multicore cable end mm^{2}	$\begin{gathered} 0.75-6+0.75-2.5^{21} \\ 0.75-4+0.5-2.5^{21} \\ 0.5-2.5+0.5-1.5 \end{gathered}$	$\begin{gathered} 0.75-6 \\ 1-4 \\ 0.75-4 \end{gathered}$	$\begin{gathered} 0.75-10 \\ 0.75-6 \\ 0.75-6 \end{gathered}$	$\begin{gathered} 4-35^{2)} \\ 6-25^{2 \prime} \\ 4-25 \end{gathered}$	3)
Cables per clamp number	1+1	2	2	1	
Auxiliary connector solid or stranded mm^{2} flexible mm^{2} flexible with multicore cable end mm^{2}	$\begin{gathered} 0.75-2.5^{2 l} \\ 0.5-2.5^{2 I} \\ 0.5-1.5 \end{gathered}$				
Cables per clamp number	2				

Type		U3/32	U12/16E	$\begin{aligned} & \text { U3/42 } \\ & \text { U3/74 } \end{aligned}$	U85				
Auxiliary contacts									
Rated insulation voltage $\mathbf{U}_{\mathbf{i}}{ }^{1 /}$									
same potential	V	690	690	690	690				
different potential	V	440	440	250	440				
Utilization category AC15									
Rated operational 24 V	A	3	5	4	5				
current $\mathrm{I}_{\text {e }}$ 230V	A	2	3	2,5	3				
400 V	A	1	2	1,5	2				
690 V	A	0,5	0,6	0,6	0,6				
Utilization category DC13									
Rated operational 24 V	A	1	1,2	1,2	1,2				
current $\mathrm{I}_{\text {e }} \quad 110 \mathrm{~V}$	A	0,15	0,15	0,15	0,15				
220 V	A	0,1	0,1						
Short circuit prot. (without welding 1kA)									
highest fuse rating $\mathrm{gL}(\mathrm{gG})$	A	4	6	6	6				
Type		U12/16	U12/16E ${ }^{4 /}$	U3/32	U3/42	U3/42	U3/74	U3/74	U85
Setting range		to 23A	22-30A	all	to 28A	28-42A	to 52A	52-65A	all
Power loss per current path (max.)									
minimum setting value	W	1,1	1,7	1,1	1,3	1,3	2	2.9	1.1
maximum setting value	W	2,3	3,7	2,3	2,6	3,3	3,7	4.5	2.5

Temperature Compensation

In case of higher ambient temperature use the following formula:
(Ambient temperature - 20) $\times 0,125=$ correction factor in $\%$ of the full load motor current
Example: Ambient temperature $70^{\circ} \mathrm{C}$, full load motor current 7A
($70-20$) $\times 0,125=6,25 \%$
Setting value: $7 \mathrm{~A}+6,25 \%=7,44 \mathrm{~A}$

1) Suitable for: earthed-neutral systems, overvoltage category I to III, pollution degree 3 (standard-industry): $\mathrm{U}_{\mathrm{imp}}=4 \mathrm{kV}$ (at 440V), 6 kV (at 690V)

Data for other conditions on request.
2) Maximum cable cross-section with prepared conductor
3) Without terminals, suitable for bushing one connector $70 \mathrm{~mm}^{2}$ (stranded) per phase
4) U12/16E... 30A: Cable cross-section for main connector like type U3/42, one connector only

Technical Specification - Motor Protection Relays Series LA

Tripping Characteristics

Tripping Curves for U12/16E, U3/32, U3/42 and U3/74
1)
a) $\min \mathrm{s}$

2)

b)

1) with three-phase load - Proceeding from service condition the times decrease to $20-30 \%$ of the characteristic values. 2) with two-pole load - Proceeding from service condition the times decrease to $70-80 \%$ of the characteristic values. a) Tripping time (Average value of typical tolerance curves from cold condition)
b) F. L. C. multiplication factor

Tripping Curves for U85

[^31]
General Information

Overload relays	Current measurement	Current range	Contactors (type, size, rating in kW)			
			$\begin{gathered} \text { LSSD+LSDD/S00 } \\ 3 / 4 / 5.5 \\ \hline \end{gathered}$	$\begin{gathered} \text { LSSO+LSDO/SO } \\ 5.5 / 7.5 / 11 \end{gathered}$	$\begin{gathered} \text { LSD2/S2 } \\ \text { 15/18.5/22 } \end{gathered}$	$\begin{gathered} \text { LSD3/S3 } \\ 30 / 37 / 45 \end{gathered}$
LSTD	integrated	0.11 ... 12	yes	--	--	--
LSTO	integrated	1.8 ... 25	--	yes	--	--
LST2	integrated	5.5 ... 50	--	--	yes	--
LST3	integrated	18 ... 100	--	--	--	yes

General Data

1) Connection for mounting onto contactors: Optimally adapted in electrical, mechanical and design terms to the contactors and soft starters, these connecting pins can be used for direct mounting of the overload relays. Standalone installation is possible as an alternative (in some cases in conjunction with a stand-alone installation module). 2) Selector switch for manual/automatic RESET and RESET button: With this switch you can choose between manual and automatic RESET. A device set to manual RESET can be reset locally by pressing the RESET button. A remote RESET is possible using the RESET modules (accessories), which are independent of size (on request). 3) Switch position indicator and TEST function of the wiring: Indicates a trip and enables the wiring test. 4) Motor current setting: Setting the device to the rated motor current is easy with the large rotary knob. 5) STOP button: If the STOP button is pressed, the NC contact is opened. This switches off the contactor downstream. The NC contact is closed again when the button is released.
2) Transparent, sealable cover Secures the motor current setting, TEST function and the selector switch for manual/ automatic RESET against adjustment.
3) Supply terminals: The generously sized terminals permit connection of two conductors with different cross-sections for the main and auxiliary circuits. The auxiliary circuit can be connected with screw terminals and alternatively with spring-loaded terminals (on request).

Connection of the auxiliary circuit

Connection type		Screw terminals
- Terminal screw		Pozidriv size 2
- Tightening torque		Nm 0.8 ... 1.2
- Conductor cross-sections (min./max.), 1 or 2 conductors		
- solid	mm^{2}	$1 \times(0.5 \ldots 4), 2 \times(0.5 \ldots 2.5)$
- finely stranded without end sleeve	mm^{2}	-
- finely stranded with end sleeve	mm^{2}	$1 \times(0.5 \ldots 2.5), 2 \times(0.5 \ldots 1.5)$
- stranded	mm^{2}	-
- AWG cables, solid or stranded	AWG	$2 \times(20 \ldots 14)$
Connection type		Spring-loaded terminals on request
- Conductor cross-sections (min./max.), 1 or 2 conductors		
- solid	mm^{2}	$2 \times(0.25 \ldots 1.5)$
- finely stranded without end sleeve	mm^{2}	--
- finely stranded with end sleeve	mm^{2}	$2 \times(0.25 \ldots 1.5)$
- stranded	mm^{2}	$2 \times(0.25 \ldots 1.5)$
- AWG cables, solid or stranded	AWG	$2 \times(24 \ldots 16)$

Technical Specifications - Thermal Overload Relays Series ALEA LST

General Information

Schrack-Info

The LST thermal overload relays up to 100 A have been designed for inverse-time delayed protection of loads with normal starting against excessive temperature rises due to overload or phase failure. An overload or phase failure results in an increase of the motor current beyond the set rated motor current. Via heating elements, this current rise heats up the bimetal strips inside the device which then bend and as a result trigger the auxiliary contacts by means of a tripping mechanism. The auxiliary contacts then switch off the load by means of a contactor. The break time depends on the ratio between the tripping current and set current le and is stored in the form of a long-term stable tripping characteristic.
The tripped status is signalled by means of a switch position indicator. Resetting takes place either manually or auto matically after the recovery time has elapsed. The devices are manufactured in accordance with environmental guidelines and contain environmentally friendly and reusable materials.

Mounting

The thermal overload relais LST are designed electrical and mechanical to contactors LSS/LSD. Therefore a direct mounting to contactor is standard.
Alternatively the LST can be mounted separate by using stand alone holder LSZ.TEOI

Connection

The thermal overload relais LST are with screwed connection performed.
Overload relays in contactor assemblies for wye-delta starting
When overload relays are used in combination with contactor assemblies for wye-delta starting it must be noted that only 0.58 times the motor current flows through the line contactor. An overload relay mounted onto the line contactor must be set to 0.58 times the motor current.

Operation with frequency converter

The LST thermal overload relays are suitable for operation with frequency converters. Depending on the frequency of the converter, a higher current than the motor current must be used in some cases due to eddy-currents and skin effects.

Phase failure protection

The LST thermal overload relays are fitted with phase failure sensitivity in order to minimize temperature rises of the load in the case of a phase failure during single-phase operation.

Setting

The LST thermal overload relays are set to the rated motor current by means of a rotary knob. The scale of the rotary knob is shown in ampere.

Manual and automatic reset

Automatic and manual reset is selected by pressing and turning the blue button (RESET button). If the button is set to manual reset, the overload relay can be reset directly by pressing the RESET button. Resetting is possible in combination with mechanical and electrical reset options from the range of accessories. If the blue button is set to automatic RESET, the relay is reset automatically. The time between tripping and resetting is determined by the recovery time.
Recovery time
After tripping due to overload, the LST thermal overload relays require some time until the bimetal strips have cooled down. The device can only be reset after the bimetal strips have cooled down. This time (recovery time) depends on the tripping characteristics and strength of the tripping current. The recovery time allows the load to cool down after tripping due to overload.

Test function

The TEST slide can be used to check whether the operational LST thermal overload relay is working properly. Actuating the slide simulates tripping of the relay. During this simulation the NC contact (95-96) is opened and the NO contact (97-98) is closed. This tests whether the auxiliary circuit has been correctly connected to the overload relay. If the LST thermal overload relay has been set to automatic RESET, the overload relay is automatically reset when the TEST slide is released. The relay must be reset with the RESET button if it has been set to manual RESET.

Stop function

If the STOP button is pressed, the NC contact is opened. This switches off the contactor downstream and thus the load.
The load is switched on again when the STOP button is released.
Display of the operating state
The respective operating state of the LST thermal overload relay is displayed by means of the position of the marking on the TEST function/switch position indicator slide. After tripping due to overload or phase failure, the marking on the slide is to left on the "O" mark, otherwise it is on the "I" mark.
Auxiliary contacts
The LST thermal overload relays are fitted with an NO contact for the "tripped" signal, and an NC contact for disconnecting the contactor.

Thermal Overload Relays LSTD, LSTO, LST2, LST3Technical Specifications

2) Terminal compartment: degree of protection IPOO.
3) The LSTD thermal overload relay with Cage Clamp terminals can only be used as a stand-alone installation.

Technical Specifications - Thermal Overload Relays Series ALEA LST

\triangle Thermal Overload Relays LSTD, LSTO, LST2, LST3					
\triangle Technical Specifications					
Type		LSTD	LSTO	LST2	LST3
Size		00	0	2	3
Main circuit					
Rated insulation voltage $\mathrm{U}_{\mathbf{i}}$ (degree of pollution 3)	V		690		1000
Rated impulse withstand voltage $\mathrm{U}_{\text {imp }}$	kV		6		8
Rated operational voltage U_{e}	V		690		1000
Type of current					
Direct current		Yes Yes, frequency range up to 400 Hz			
- Alternating current					
Set current	A	$\begin{gathered} 0.11 \ldots 0.16 \text { to } \\ 9 \ldots . .12 \end{gathered}$	$\begin{gathered} \hline 1.8 \ldots 2.5 \text { to } \\ 20 \ldots 25 \end{gathered}$	$\begin{gathered} 5.5 \ldots 8 \text { to } \\ 40 . . .50 \end{gathered}$	$\begin{gathered} 18 \ldots . .25 \text { to } \\ 80 \text {... } 100 \end{gathered}$
Power loss per unit (max.)	W	3.9 ... 6.6	3.9 ... 6	$6 . . .9$	10 ... 16.5
Short-circuit protection					
- With fuse without contactor					
- With fuse and contactor		See "Technical specifications" (short-circuit protection with fuses/motor starter protectors for motor feeders)			
Safe isolation between main and auxiliary conducting path acc. to IEC 60947-1	V	500		690	
Connection for main circuit					
Connection type		Screw terminals with box terminal			
		Pozidriv size 2			Allen screw 4mm
- Tightening torque	Nm	0.8 ... 1.2	2 ... 2.5	$3 . . .4 .5$	4 ... 6
- Conductor cross-sections (min./max.),					
1 or 2 conductors					
- solid	mm^{2}	$\begin{gathered} 2 \times(0.5 \ldots .1 .5)^{2)} \\ 2 \times(0.75 \ldots . .2 .5)^{2)} \\ \text { Max. } 2 \times(1 \ldots .4)^{2 l} \end{gathered}$	$\begin{aligned} & 2 \times(1 \ldots 2.5)^{2)} \\ & 2 \times(2.5 \ldots 6)^{2)} \end{aligned}$ Max. $2 \times\left(2.5 \ldots 10^{2)}\right)$	$2 \times(0.75 \ldots 16)$	$2 \times(2.5 \ldots 16)$
- finely stranded with end sleeve	$\overline{m m}{ }^{2}$	$\begin{gathered} 2 \times(0.5 \ldots 1.5)^{27} \\ 2 \times(0.75 \ldots \quad 2.5)^{21} \\ \hline \end{gathered}$	$\begin{aligned} & 2 \times(1 \ldots 2.5)^{2} \\ & 2 \times(2.5 \ldots 6)^{2)} \end{aligned}$	$\begin{aligned} & 2 \times(0.75 \ldots 16) \\ & 1 \times(0.75 \ldots 25) \end{aligned}$	$\begin{aligned} & 2 \times(2.5 \ldots 35) \\ & 1 \times(2.5 \ldots 50) \\ & \hline \end{aligned}$
- stranded	mm^{2}	$\begin{aligned} & 2 \times(0.5 \ldots \quad 1.5)^{2)} \\ & 2 \times(0.75 \ldots 2.5)^{2)} \\ & \text { Max. } 2 \times(1 \ldots 4)^{21} \end{aligned}$	$\begin{gathered} 2 \times(1 \ldots 2.5)^{2)} \\ 2 \times(2.5 \ldots 6)^{21} \\ \text { Max. } 2 \times(2.5 \ldots 10)^{2)} \end{gathered}$	$\begin{aligned} & 2 \times(0.75 \ldots 25) \\ & 1 \times(0.75 \ldots 35) \end{aligned}$	$\begin{aligned} & 2 \times(10 \ldots 50) \\ & 1 \times(10 \ldots . .70) \end{aligned}$
- AWG cables, solid or stranded	AWG	$2 \times(18 . . .14)$	$2 \times(14 \ldots 10)$	$\begin{aligned} & 2 \times(18 \ldots 3) \\ & 1 \times(18 \ldots 1) \\ & \hline \end{aligned}$	$\begin{aligned} & 2 \times(10 \ldots 1 / 0) \\ & 1 \times(10 \ldots 2 / 0) \\ & \hline \end{aligned}$
- ribbon cable conductors (number x width x thickness) mm		--		$2 \times(6 \times 9 \times 0.8)$	$2 \times(6 \times 9 \times 0.8)$
Busbar connection		Busbar connection ${ }^{1 /}$			
- Terminal screw	Nm	--			M6 $\times 20$
- Tightening torque		--			4 ... 6
- Conductor cross-sections (min./max.)					
- finely stranded with cable lug	mm^{2}	--			2×70
- stranded with cable lug	mm^{2}	--			3×70
- AWG cables, solid or stranded, with cable lug	AWG	--			2/0
- with connecting bar (max. width)	mm	--			12
Connection type		Cage Clamp terminals (on request)			
- Conductor cross-sections (min./max.)					
- solid	mm^{2}	$2 \times(0.25 \ldots 2.5)$		--	
- finely stranded without end sleeve	mm^{2}	$2 \times(0.25 \ldots 2.5)$		--	
- finely stranded with end sleeve	mm^{2}	$2 \times(0.25 \ldots 1.5)$		--	
- stranded	mm^{2}	--		--	
- AWG cables, solid or stranded	AWG	$2 \times(24 \ldots 14)$		--	

1) The box terminal is removable. Rail and cable lug connections are possible if the box terminal is removed.
2) If two different conductor cross-sections are connected to one clamping point, both cross-sections must lie in the range specified. If identical cross-sections are used, this restriction does not apply.

- Thermal Overload Relays LSTD, LSTO, LST2, LST3Technical Specifications

Type Size		$\begin{gathered} \text { LSTD } \\ 00 \end{gathered}$	$\begin{gathered} \text { LSTO } \\ 0 \end{gathered}$	$\begin{gathered} \text { LST2 } \\ 2 \end{gathered}$	$\begin{gathered} \text { LST3 } \\ 3 \end{gathered}$
Auxiliary circuit					
Number of NO contacts		1			
Number of NC contacts		1			
Auxiliary contacts - assignment		1 NO for the signal "rripped",			
Rated insulation voltage $\mathbf{U}_{\mathbf{i}}$ (degree of pollution 3)	V	690			
Rated impulse withstand voltage $\mathrm{U}_{\text {imp }}$	kV	6			
Contact rating of the auxiliary contacts					
- NC contact with alternating current AC-14/AC-15, rated operational current I_{e} at U_{e} :					
- 24V	A	4			
-120V	A	4			
- 125V	A	4			
- 230V	A	3			
- 400V	A	2			
- 600V	A	0.6			
-690V	A	0.5			
- NO contact with alternating current AC-14/AC-15, rated operational current I_{e} at U_{e} :					
- 24V	A	3			
- 120V	A	3			
- 125V	A	3			
- 230V	A	2			
- 400 V	A	1			
- 600V	A	0.6			
-690V	A	0.5			
- NC contact, NO contact with direct current DC-13, rated operational current I_{e} at U_{e} :					
- 24V	A	1			
-60V	A	11			
- 110V	A	0.22			
- 125V	A	0.22			
- 220V	A	0.11			
- Continuous thermal current Ith	A	6^{21}			
- Contact reliability (suitability for PLC control; 17V, 5 mA)		Yes			
Short-circuit protection					
- With fuse					
- gl/gG operational class	A	6			
- Quick	A	10			
- With miniature circuit breaker (C characteristic)	A	6			
Safe isolation between main and auxiliary conducting path acc. to IEC 60947-1	V	415			
CSA, UL, UR rated data					
Auxiliary circuit - switching capacity		B600, R300			
Connection of the auxiliary circuit					
Connection type		Screw terminals			
- Terminal screw		Pozidriv size 2			
- Tightening torque	Nm	0.8 ... 1.2			
- Conductor cross-sections (min./max.), 1 or 2 conductors					
- solid	mm ${ }^{2}$	$\left.2 \times(0.5 \ldots 1.5)^{3}\right), 2 \times(0.75 \ldots 2.5)^{31}$			
- finely stranded without end sleeve	mm^{2}	$2 \times(0.5 \ldots . .1 .5), 2 \times(0.75 \ldots .2 .5)$			
- finely stranded with end sleeve	mm^{2}	$\left.2 \times(0.5 \ldots 1.5)^{3}\right), 2 \times(0.75 \ldots 2.5)^{31}$			
- stranded	mm^{2}	$2 \times(0.5 \ldots 1.5)^{3}, 2 \times(0.75 \ldots 2.5)^{3}$			
- AWG cables, solid or stranded	AWG	$2 \times(18 \ldots 14)$			
Connection type		Cage Clamp terminals on request			
- Conductor cross-sections (min./max.)					
- solid		$2 \times(0.25 \ldots 2.5)$			
- finely stranded without end sleeve		$2 \times(0.25 \ldots 2.5)$			
- finely stranded with end sleeve		$2 \times(0.25 \ldots 1.5)$			
- stranded		$\begin{gather*} -- \\ \times(24 . . .14) \end{gather*}$			
- AWG cables, solid or stranded					

AW cables, solid or stranded

1) On request.
2) Up to $\mathrm{I}_{\mathrm{k}} \leq 0.5 \mathrm{kA} ; \leq 260 \mathrm{~V}$.
3)If two different conductor cross-sections are connected to one clamping point, both cross-sections must lie in the range specified. If identical cross-sections are used, this restriction does not apply.

Technical Specifications - Thermal Overload Relays Series ALEA LST

Thermal Overload Relays LSTD and LSTO
With short-circuit currents up to 50 kA at $50 / 60 \mathrm{~Hz}$ 690VAC Permissible short-circuit protection fuse for motor starters comprising overload relay and contactor, type of coordination "2"11

Overload relays	3kW \triangleq LSSD/LSDD07			4kW § LSSD/LSDD09			$5.5 \mathrm{~kW} \triangleq$ LSSD/LSDD 12			UL-listed fuses
Setting range	$\begin{gathered} \mathrm{I}_{\mathrm{e}} \max =7 \mathrm{~A} \\ \text { (at } \mathrm{AC} 50 \mathrm{~Hz} 400 \mathrm{~V} \text {) } \end{gathered}$			$\begin{gathered} \mathrm{I}_{\mathrm{e}} \max =9 \mathrm{~A} \\ \text { (at } \mathrm{AC} 50 \mathrm{~Hz} 400 \mathrm{~V} \text {) } \end{gathered}$			$\begin{gathered} \mathrm{I}_{\mathrm{e}} \max =12 \mathrm{~A} \\ \text { (at } \mathrm{AC} 50 \mathrm{~Hz} 400 \mathrm{~V} \text {) } \end{gathered}$			RK5
A	$\mathrm{gL} / \mathrm{gG}$	aM	BS 88	$\mathrm{gL} / \mathrm{gG}$	aM	BS 88	$\mathrm{gl} / \mathrm{gG}$	aM	BS 88	A
Size 00										
$0.11 \ldots 0.16$	0.5	-	-	0.5	-	-	0.5	-	-	1
0.14 ... 0.2	1	-	-	1	-	-	1	-	-	1
0.18 ... 0.25	1	-	-	1	-	-	1	-	-	1
0.22 ... 0.32	1.6	-	2	1.6	-	2	1.6	-	2	1
0.28 ... 0.4	2	-	2	2	-	2	2	-	2	1.6
0.35 ... 0.5	2	-	2	2	-	2	2	-	2	2
0.45 ... 0.63	2	-	4	2	-	4	2	-	4	2.5
$0.55 \ldots 0.8$	4	-	4	4	-	4	4	-	4	3
0.7 ... 1	4	-	6	4	-	6	4	-	6	4
0.9 ... 1.25	4	-	6	4	-	6	4	-	6	5
1.1 ... 1.6	6	-	10	6	-	10	6	-	10	6
1.4 ... 2	6	-	10	6	-	10	6	-	10	8
1.8 ... 2.5	10	-	10	10	-	10	10	-	10	10
2.2 ... 3.2	10	-	16	10	-	16	10	-	16	12
2.8 ... 4	16	-	16	16	-	16	16	-	16	16
3.5 ... 5	20	6	20	20	6	20	20	6	20	20
4.5 ... 6.3	20	6	20	20	6	20	20	6	20	25
5.5 ... 8	20	10	20	20	10	20	20	10	20	30
7 ... 10	-	-	-	20	16	20	20	16	20	40
9 ... 12	-	-	-	-	-	-	20	16	25	45

Overload relays	$5.5 \mathrm{~kW} \triangleq$ LSSO/LSD012			7.5 kW \triangleq LSSO/LSD017			$5.5 \mathrm{~kW} \triangleq$ LSSO/LSD025			UL-listed fuses
Setting range	$\begin{gathered} \mathrm{I}_{\mathrm{e}} \max =12 \mathrm{~A} \\ \text { (at } \mathrm{AC} 50 \mathrm{~Hz} 400 \mathrm{~V} \text {) } \end{gathered}$			$\begin{gathered} \mathrm{I}_{\mathrm{e}} \max =17 \mathrm{~A} \\ \text { (at } \mathrm{AC} 50 \mathrm{~Hz} 400 \mathrm{~V} \text {) } \end{gathered}$			$\begin{gathered} \mathrm{I}_{\mathrm{e}} \max =25 \mathrm{~A} \\ \text { (at } \mathrm{AC} 50 \mathrm{~Hz} 400 \mathrm{~V} \text {) } \end{gathered}$			RK5
A	$\mathrm{gl} / \mathrm{gG}$	aM	BS 88	$\mathrm{gL} / \mathrm{gG}$	aM	BS 88	gl/gG	aM	BS 88	A
Size 0										
1.8 ... 2.5	10	-	10	10	-	10	10	-	10	10
2.2 ... 3.2	10	-	16	10	-	16	10	-	16	12
2.8 ... 4	16	-	16	16	-	16	16	-	16	16
3.5 ... 5	20	6	20	20	6	20	20	6	20	20
4.5 ... 6.3	20	6	25	20	6	25	20	6	25	25
5.5 ... 8	25	10	25/32 ${ }^{2 /}$	25	10	25/32 ${ }^{21}$	25	10	32	30
7 ... 10	25	16	25/32 ${ }^{21}$	25	16	25/32 ${ }^{21}$	32	16	35	40
9 ... 12.5	25	20	25/32 ${ }^{2 /}$	25	20	25/32 ${ }^{2 /}$	35	20	35	45
$11 . . .16$	25	20	25/32 ${ }^{2 /}$	25	20	25/32 ${ }^{21}$	35	20	35	60
$14 . . .20$	-	-		25	20	25/32 ${ }^{21}$	35	20	35	80
$17 . . .22$	-	-		-	-	-	35	20	35	80
$20 . . .25$	-	-	-	-	-	-	35	20	35	100

1) Assignment and short-circuit protective devices according to IEC60947-4-1:

The contactor or starter must not endanger persons or the installation in the event of a short-circuit.
Type of coordination 1: The contactor or the starter may be non-operational after every short-circuit release.
Type of coordination 2: The contactor or the starter must be operational after a short-circuit release (without replacement of parts).
Welding of the contacts is permissible however.
2) At max. 415 V

- Thermal Overload Relays LST2 and LST3

With short-circuit currents up to 50 kA at $50 / 60 \mathrm{~Hz}$ 690VAC Permissible short-circuit protection fuse for motor starters comprising overload relay and contactor, type of coordination "2"11

Overload relays	$3 \mathrm{~kW} \triangleq$ LSD232			4 kW § LSD240			$5.5 \mathrm{~kW} \triangleq$ LSD250			UL-listed fuses
Setting range	$\begin{gathered} \mathrm{I}_{\mathrm{e}} \max =32 \mathrm{~A} \\ (\mathrm{at} 50 \mathrm{~Hz} 400 \mathrm{VAC}) \end{gathered}$			$\begin{gathered} \mathrm{I}_{\mathrm{e}} \max =40 \mathrm{~A} \\ \text { (at } 50 \mathrm{~Hz} 400 \mathrm{VAC} \text {) } \end{gathered}$			$\begin{gathered} \mathrm{I}_{\mathrm{e}} \mathrm{max}=50 \mathrm{~A} \\ \text { (at } 50 \mathrm{~Hz} 400 \mathrm{VAC}) \end{gathered}$			RK5
A	$\mathrm{gl} / \mathrm{gG}$	aM	BS 88	$\mathrm{gl} / \mathrm{gG}$	aM	BS 88	$\mathrm{gl} / \mathrm{gG}$	aM	BS 88	A
Size 2										
5.5 ... 8	25	10	25	25	10	25	25	10	25	30
7 ... 10	32	16	32	32	16	32	32	16	32	40
9 ... 12.5	35	16	35	35	16	35	35	16	35	50
$11 . . .16$	40	20	40	40	20	40	40	20	40	60
14 ... 20	50	25	50	50	25	50	50	25	50	80
$18 . . .25$	63	32	63	63	32	63	63	32	63	100
$22 . . .32$	63	35	63	63	35	63	80	35	80	125
$28 . . .40$	63	50	63	63	50	63	80	50	80	150
$36 . . .45$	--	--	--	63	50	80	80	50	80	175
40 ... 50	--	--	--	--	--	--	80	50	80	200

Overload relays	$30 \mathrm{~kW} \triangleq$ LSD365			$37 \mathrm{~kW} \triangleq$ LSD380			$45 \mathrm{~kW} \triangleq$ LSD395			UL-listed fuses
Setting range	$\begin{gathered} \mathrm{I}_{\mathrm{e}} \max =65 \mathrm{~A} \\ \text { (at } 50 \mathrm{~Hz} 400 \mathrm{VAC}) \end{gathered}$			$\begin{gathered} \mathrm{I}_{\mathrm{e}} \max =80 \mathrm{~A} \\ \text { (at } 50 \mathrm{~Hz} 400 \mathrm{VAC}) \end{gathered}$			$\begin{gathered} \mathrm{I}_{\mathrm{e}} \max =95 \mathrm{~A} \\ \text { (at } 50 \mathrm{~Hz} 400 \mathrm{VAC} \text {) } \end{gathered}$			RK5
A	$\mathrm{gl} / \mathrm{gG}$	aM	BS 88	$\mathrm{gL} / \mathrm{gG}$	aM	BS 88	$\mathrm{gl} / \mathrm{gG}$	aM	BS 88	A
Size 3										
$18 . . .25$	63	32	63	63	32	63	63	32	63	100
$22 . . .32$	80	35	80	80	35	80	80	35	80	125
$28 . . .40$	80	50	80	80	50	80	80	50	80	150
36 ... 50	125	50	125	125	50	125	125	50	125	200
$45 . . .63$	125	63	125	160	63	160	160	63	160	250
$57 . . .75$	--	--	--	160	80	160	160	80	160	300
70 ... 90	--	--	--	--	--	--	160	100	160	350
80 ... 100	--	--	--	--	--	--	160	100	160	350

[^32]Technical Specifications - Thermal Overload Relays series ALEA LST

Accessories

Overview

The following accessories are available for the LST thermal overload relays:

- For the four overload relay sizes 00 to 3 one terminal bracket each for stand-alone installation
- Terminal covers

Type For overload relays		$\begin{gathered} \text { LSZDTEOI } \\ \hline \end{gathered}$	$\begin{gathered} \text { LSZOTEOI } \\ \text { LSTO } \end{gathered}$	$\begin{gathered} \text { LSZ2TEO1 } \\ \text { LST2 } \end{gathered}$	$\begin{gathered} \text { LSZ3TEO1 } \\ \text { LST3 } \end{gathered}$
Mounting type		For screw and snap-on mounting onto TH 35 standard mounting rails, size S 3 also for TH 75 standard mounting rails			
Connection for main circuit		Screw terminals		Screw terminals with box terminal	
Connection type					
Terminal screw		Pozidriv size 2			Allen screw 4 mm
- Conductor cross-section (min./max.), 1 or 2 conductors					
- solid	mm ${ }^{2}$	$\begin{aligned} & 1 \times(0.5 \ldots 2.5), \\ & \max .1 \times(\ldots 4) \end{aligned}$	$\begin{gathered} 1 \times(1 \ldots 6), \\ \max .1 \times(\ldots 10) \end{gathered}$	$2 \times(0.75$... 16)	$2 \times(2.5$... 16)
- finely stranded without end sleeve	mm^{2}	--			
- finely stranded with end sleeve	mm^{2}	$1 \times(0.5 \ldots 2.5)$	$1 \times(1 \ldots 6)$	$\begin{aligned} & \hline 2 \times(0.75 \ldots 16), \\ & 1 \times(0.75 \ldots 25) \end{aligned}$	$\begin{aligned} & 2 \times(2.5 \ldots 35), \\ & 1 \times(2.5 \ldots 50) \\ & \hline \end{aligned}$
- stranded	mm^{2}	$\begin{aligned} & 1 \times(0.5 \ldots 2.5), \\ & \max .1 \times(\ldots . .4) \\ & \hline \end{aligned}$	$\begin{gathered} 1 \times(1 \ldots 6), \\ \max .1 \times(\ldots 10) \end{gathered}$	$\begin{gathered} \hline 2 \times(0.75 \ldots 25), \\ 1 \times(0.75 \ldots 35) \\ \hline \end{gathered}$	$\begin{aligned} & 2 \times(10 \ldots 50), \\ & 1 \times(10 \ldots 70) \end{aligned}$
- AWG cables, solid or stranded	AWG	$1 \times(18 \ldots 14)$	$1 \times(14 \ldots 10)$	$\begin{aligned} & 2 \times(18 \ldots 3), \\ & 1 \times(18 \ldots 1) \end{aligned}$	$\begin{aligned} & 2 \times(10 \ldots 1 / 0) \\ & 1 \times(10 \ldots 2 / 0) \end{aligned}$
- ribbon cable conductors (number x width x thickness)	mm	--	--	$2 \times(6 \times 9 \times 0.8)$	$2 \times(6 \times 9 \times 0.8)$

Thermal Overload Relays - Tripping Characteristics

The tripping characteristics show the relationship between the tripping time and tripping current as multiples of the set current le and are given for symmetrical three-pole and two-pole loads (from the cold state). The smallest current that causes a tripping is called " minimum tripping current". According to IEC 60947-4-1, this current must be within specified limits. The limits of the minimum tripping current for the LST thermal overload relays for symmetrical three-pole loads are between 105% and 120% of the set current. The tripping characteristic starts with the minimum tripping current and continues with higher tripping currents based on the characteristics of the so-called trip classes (CLASS 10, CLASS 20 etc.). The trip classes describe the time intervals within which the overload relays have to trip with 7.2 times the set current le from the cold state for symmetrical three-pole loads. The tripping characteristic for a three-pole LST thermal overload relay (see characteristic curve for symmetrical three-pole loads from the cold state) applies, if all three bimetal strips are simultaneously loaded with a current in same hight. If only two bimetal strips are Loaded (heated) - due to a phase failure - these two strips have to generate the full, necessary force to trigger the tripping mechanism which would result in a longer tripping time or would allow a higher current. If these higher currents are applied over a longer period, they usually cause damage to the load. To avoid this damaging, the LST thermal overload relays are fitted with phase failure sensitivity which ensures faster tripping in accordance with the characteristic curve for double-pole loads from the cold state by means of a suitable mechanical mechanism. Compared with cold load, a load at operating temperature obviously has a lower temperature reserve. This is taken into account by the LST Thermal overload relay. In this case, the tripping time is reduced by 25%, when loaded with the set current le for an extended period.

Schematic Representation of a Characteristic Curve

[^33]The characteristic curves for the individual LST thermal overload relays can be requested from Technical Assistance.

Technical Specification - Thermal Overload Relays Series CUBICO

- Thermal Overload Relays Series CUBICO Mini

- Technical Specifications - LZTM

Standard			IEC/EN 60947-4-1
Rated insulation voltage			690VAC
Rated frequency			$50 / 60 \mathrm{~Hz}$
Rated impulse withstand voltage			6 kV
Overvoltage category			III
Rated current			0.1A-13A
Tripping class			Class 10A
Rated current l_{N}			0.1-0.16A
			0.16-0.25A
			0.25-0.4A
			0.4-0.63A
			$0.63-1 \mathrm{~A}$
			1-1.6A
			1.6-2.5A
			$2.5-4 \mathrm{~A}$
			4-6A
			$5.5-8 \mathrm{~A}$
			7-10A
			9-13A
Match to contactor			LZDM....
Matching fuse		0.1-0.16A	$2 \mathrm{AgG} / \mathrm{gl}$
		0.16-0.25A	$2 \mathrm{AgG} / \mathrm{gl}$
		0.25-0.4A	$2 \mathrm{AgG} / \mathrm{gl}$
		0.4-0.63A	$2 \mathrm{AgG} / \mathrm{gl}$
		0.63-1A	$4 \mathrm{AgG} / \mathrm{gl}$
		1-1.6A	$4 \mathrm{AgG} / \mathrm{gl}$
		1.6-2.5A	$6 \mathrm{AgG} / \mathrm{gl}$
		2.5-4A	$10 \mathrm{AgG} / \mathrm{gl}$
		4-6A	$16 \mathrm{AgG} / \mathrm{gl}$
		$5.5-8 \mathrm{~A}$	$20 \mathrm{AgG} / \mathrm{gl}$
		7-10A	$20 \mathrm{AgG} / \mathrm{gl}$
		$9-13 \mathrm{~A}$	$25 \mathrm{AgG} / \mathrm{gl}$
Overload protection		$1.05 \times \mathrm{I}_{\mathrm{N}}$	No operation within 2h
		$1.2 \times \mathrm{I}_{\mathrm{N}}$	Operation within 2h
		$1.5 \times 1{ }_{N}$	Operation within 2 min
		$7.2 \times 1{ }_{N}$	$2 \mathrm{~s}<$ Tripping ≤ 10 s
Mounting			Plug-in type
Auxiliary contacts			$1 \mathrm{NO}+1 \mathrm{NC}$
Rated current of auxiliary contact		AC-15 230V	2.61 A
		AC-15 400V	1.5A
		DC-13 220V	0.2A
Terminal cross section main circuit			
	Single-core conductor		1-2.5mm ${ }^{2}$
	Stranded conductor		1-2.5mm ${ }^{\text {a }}$
	Terminal screw		M4
Terminal cross section auxiliary circuit			
	Single-core conductor		0.5-2.5mm ${ }^{2}$
	Stranded conductor		$0.5-2.5 \mathrm{~mm}^{2}$
	Terminal screw		M3.5

- Thermal Overload Relays Series CUBICO Mini

Electric Tripping Curves - Class 10A

A) Tripping time
B) Current

1) 1-phase operation, cold state start
2) 2-phase operation, cold state start
3) 3-phase operation, cold state start

Technical Specification - Thermal Overload Relays Series CUBICOThermal Overload Relays Series CUBICO Classic

- Technical Specifications - LZTC

- Thermal Overload Relays Series CUBICO Classic

Electric Tripping Curve - Class 10A

A) Tripping time
B) Current

1) 1-phase operation, cold state start
2) 2-phase operation, cold state start
3) 3-phase operation, cold state start

Motor Protection Switches Series BE5

Motor Protection Switches Series BE6

- Motor Protection Switches Series BES, Size 0

Auxiliary Contacts for Motor Protection Switches
Signaling Switch for Motor Protection Switches

Motor Protection Switches

Motor Protection Switches Series BE5, BE6 Page 410
Motor Protection Switches Series ALEA BES Page 425
Technical Specification Page 441

Motor Protection Switches Series BE5, BE6

Motor Protection Switches Series BE5

Schrack-Info

- Motor protection switch 3-pole from 0.16 A up to 32 A

Standards			EN 60647, IEC 60947
Rated current I_{n}			0,1-25A
Rated uninterrupted current = rated operational current $\mathrm{I}_{u}=\mathrm{I}_{\text {e }}$			25 A or current setting of the overcurrent release
Rated operational voltage $\mathrm{U}_{\text {e }}$			690VAC
Rated frequency			$40-60 \mathrm{~Hz}$
Tripping	Overload		adjustable 0,6-1 $\times \mathrm{I}_{\text {n }}$
	Short circuit		set permanently on $14 \times \mathrm{I}_{n}$
Phase failure protection			Yes
Tripping capacity	0,1-10A		0,1-10A: inherently stable (100kA)
	10-16A		50 kA
	16-25A		16kA
Direction of electric current			any
Rated impulse withstand voltage $\mathrm{U}_{\text {imp }}$			6000VAC
Overvoltage category			III
Current heat loss (3 pole at operating temperature)			6W
Lifespan	mechanical		10.000 operations
	electrical (AC-3At 400V)		10.000 operations
Maximum operating frequency			40 operations per hour
Short-circuit rating	AC-3 (up to 690V)		25A
	DC-5 (up to 250V)		25A (3 contacts in series)
Rated making capacity	$\cos \varphi=0,45$	230-690VAC	110A
Rated breaking capacity	$\cos \varphi=0,45$	230 VAC	90A
	$\cos \varphi=0,45$	400VAC	90A
	$\cos \varphi=0,45$	500 VAC	64A
	$\cos \varphi=0,45$	690 VAC	54A
Rated operational current enclosed, not enclosed $\mathrm{I}_{\text {e }}$	AC-1-application	230 VAC	16A
		400VAC	16A
		440VAC	16A
		500 VAC	16A
		690VAC	16A
	AC-3-application	230VAC	8,7A
		400VAC	8,8A
		440 VAC	7,7A
		500VAC	6,4A
		690VAC	4,8A
	AC-4-application	230 VAC	6,6A
		400VAC	6,6A
		440VAC	6A
		500VAC	5A
		690VAC	3,4A

Motor Protection Switches Series BE5

Article	max. rated operational power AC-3					Continuous rated current	Setting range	
	$\begin{gathered} \hline 220 \mathrm{~V}, 230 \mathrm{~V}, \\ 240 \mathrm{~V} \\ \mathrm{P}[\mathrm{~kW}] \\ \hline \end{gathered}$	$\begin{gathered} \hline 380 \mathrm{~V}, 400 \mathrm{~V}, \\ 415 \mathrm{~V} \\ \mathrm{P}[\mathrm{~kW}] \\ \hline \end{gathered}$	$\begin{gathered} 440 \mathrm{~V} \\ \mathrm{P}[\mathrm{~kW}] \end{gathered}$	$\begin{aligned} & 500 \mathrm{~V} \\ & \mathrm{P}[\mathrm{~kW}] \end{aligned}$	$\begin{aligned} & \hline 660 \mathrm{~V}, \\ & 690 \mathrm{~V} \\ & \mathrm{P}[\mathrm{~kW}] \end{aligned}$		Overload tripping I_{r}	Short circuit tripping I_{m}
BE500160	-	-	-	-	0.06	0.16	0.1-0.16	2.2
BE500250	-	0.06	0.06	0.06	0.12	0.25	0.16-0.25	3.5
BE500400	0.06	0.09	0.12	0.12	0.18	0.4	0.25-0.4	5.6
BE500630	0.09	0.12	0.18	0.25	0.25	0.63	0.4-0.63	8.8
BE501000	0.12	0.25	0.25	0.37	0.55	1	0.63-1	14
BE501600	0.25	0.55	0.55	0.75	1.1	1.6	1-1.6	22
BE502500	0.37	0.75	1.1	1.1	1.5	2.5	1.6-2.5	35
BE504000	0.75	1.5	1.5	1.5	3	4	2.5-4	56
BE506300	1.1	2.2	3	3	4	6.3	4-6.3	88
BE510000	2.2	4	4	4	7.5	10	6.3-10	140
BE516000	4	7.5	9	9	12.5	16	10-16	224
BE520000	5.5	9	11	12.5	15	20	16-20	280
BE525000	5.5	12.5	12.5	15	22	25	20-25	350

Dimensions

Motor Protection Switches Series BE5, BE6

Motor Protection Switches Series BE5
Circuit Diagram

Mounting Position

Tripping Characteristic Curve

Motor Protection Switches Series BE5

- Let-through Energy Diagram

DESCRIPTION	TYPE NO.	AVAILABLE	ORDER NO.
Motor protection switches series BE5			
0.16-0.25A		[-00-9,	BE500250
0.25-0.40A			BE500400
0.40-0.63A		[000-9,	BE500630
0.63-1.00A		-00\%-豕	BE501000
1.00-1.60A			BE501600
1.60-2.50A		- -8000	BE502500
2.5A-4.0A		-000-9,	BE504000
4.0-6.3A		- -8000	BE506300
6.3-10A		- $-\times 0$	BE510000
10-16A		-000-9,	BE516000
16-20A		-000-0,	BE520000
20-25A		- $-60-1$	BE525000
25-32A		- -0×0	BE532000
Auxiliary contacts			
Auxiliary contact front, 1NO+1NC	BE5/6-HIF 11	- -2000	BE082882
Auxiliary contact front, 1NO	BE5/6-HIF 10	$+\infty$	BE082884

Motor Protection Switches Series BE5, BE6

Motor Protection Switches Series BE6

Schrack-Info

- Motor protection switch 3-pole from 24A up to 63A

Standards		EN 60647, IEC 60947
Rated current In_{n}		32-63A
Rated uninterrupted current = rated operational current $\mathrm{I}_{\mathrm{U}}=I_{\text {e }}$		63 A or current setting of the overcurrent release
Rated operational voltage g $\mathrm{U}_{\text {e }}$		690VAC
Rated frequency		$40-60 \mathrm{~Hz}$
Tripping	Overload	adjustable 0,6-1 $\times \mathrm{I}_{n}$
	Short circuit	set permanently on $14 \times \mathrm{I}_{n}$
Phase failure protection		yes
Tripping capacity		50kA
Direction of electric current		any
Rated impulse withstand voltage $\mathrm{U}_{\text {imp }}$		6000VAC
Overvoltage category		III
Current heat loss (3 pole at operating temperature)		9,5W
Lifespan	mechanical	30.000 operations
	electrical (AC-3 at 400V)	30.000 operations
Maximum operating frequency		40 operations per hour
Short-circuit rating	AC-3 (up to 690V)	63A
	DC-5 (up to 250V)	63A (3 contacts in series)
Degree of protection	Device	IP20
	Terminations	IPOO
Protection against direct contact		Finger and back-of-hand proof
Mechanical shock resistance half-sinusoidal shock 10 ms to IEC 60068-2-27		15 g
Altitude		max. 2000 m
Climatic proofing		Damp heat, constant, to IEC 60068-2-78
		Damp heat, cyclic, to IEC 60068-2-30
Pollution degree		3
Ambient temperature		Stock $-25^{\circ} \mathrm{C}$ up tp $70^{\circ} \mathrm{C}$
		Not enclosed $-25^{\circ} \mathrm{C}$ up to $55^{\circ} \mathrm{C}$
		Enclosed $-25^{\circ} \mathrm{C}$ up to $40^{\circ} \mathrm{C}$
Terminals	Screw-terminals	Single wire $1 \times 1-50 \mathrm{~mm}^{2} / 2 \times 1-35 \mathrm{~mm}^{2}$
		Flexible with ferrule $1 \times 1-35 \mathrm{~mm}^{2} / 2 \times 1-35 \mathrm{~mm}^{2}$
Torque		Mains 3Nm

Motor Protection Switches Series BE5, BE6

Motor Protection Switches Series BE6

Article	max. rated operational power AC-3					Continuous rated current I_{u}	Setting range	
	$\begin{gathered} \hline 220 \mathrm{~V}, 230 \mathrm{~V}, \\ 240 \mathrm{~V} \\ \mathrm{P}[\mathrm{~kW}] \\ \hline \end{gathered}$	$\begin{gathered} \hline 380 \mathrm{~V}, 400 \mathrm{~V}, \\ 415 \mathrm{~V} \\ \mathrm{P}[\mathrm{~kW}] \\ \hline \end{gathered}$	$\begin{gathered} 440 \mathrm{~V} \\ \mathrm{P}[\mathrm{~kW}] \end{gathered}$	$\begin{gathered} 500 \mathrm{~V} \\ \mathrm{P}[\mathrm{~kW}] \end{gathered}$	$\begin{gathered} 660 \mathrm{~V}, \\ 690 \mathrm{~V} \\ \mathrm{P}[\mathrm{~kW}] \\ \hline \end{gathered}$		Overload tripping I_{r}	Short circuit tripping \mathbf{I}_{m}
BE632000	7,5	15	17,5	22	22	32	25-32	448
BE640000	11	20	22	24	30	40	32-40	560
BE650000	14	25	30	30	45	50	40-50	700
BE658000	17	30	37	37	55	58	50-58	812
BE663000	18,5	34	37	45	55	65	55-63	882

Dimensions

Motor Protection Switches Series BE5, BE6

Motor Protection Switches Series BE6

Circuit Diagram

Mounting Position

Tripping Characteristic Curve

Motor Protection Switches Series BE6
Let-through Energy Diagram

DESCRIPTION	TYPE NO.	AVAILABLE	ORDER NO.
Motor Protection Switches Series BE6			
24-32A			BE632000
32-40A		- -8000	BE640000
40-50A		- -0×0	BE650000
50-58A			BE658000
55-63A		- -80	BE663000
Auxiliary contacts			
Auxiliary contact front, 1NO+1NC	BE5/6-HIF 11	- -0×0	BE082882
Auxiliary contact front, 1NO	BE5/6-HIF 10	$+\infty 0$	BE082884

Motor Protection Switches Series BE5, BE6

- Feeding Terminal Blocks for BE5

- Schrack-Info
- Feed terminals BE590001 for Motor protection switches, additionally mountable to busbars, cover for modular devices (slot 45 mm) can be mounted
- Feed terminals BE590002 for Motor protection switches, additionally mountable to busbars, cover for modular devices (slot 45 mm) can not be mounted

	BE590001	BE590002
Max.current:	63 A	
Max. voltage:	690 V	
Terminal-material:	brass	
Pin-material:	brass	
Cover:	PC / ABS - UL-V0	
Thermal properties:	EN ISO $306=138^{\circ} \mathrm{C}$	
Screw:	St 5.8	
Stripped insulation:	12 mm	
Terminal cross section:	U - single wire: 6-25 mm^{2}	
	R - stranded wire: $6-25 \mathrm{~mm}^{2}$	
	K - flexible with sleeve: $4-16 \mathrm{~mm}^{2}$	
	F - flexible with sleeve: $4-16 \mathrm{~mm}^{2}$	
Torque of screw:	2 Nm	

Dimensions

[^34]2) Busbar

Feeding Terminal Blocks for BE5
Dimensions

Motor Protection Switches Series BE5, BE6

Busbars for BE5

Bausbar type:	Fork-busbar
Number of poles:	3-pole
Max. current Is/Phase	63 A
Mounting type:	not possible to break off
Cross section:	$10 \mathrm{~mm}^{2}$
Phase sequence:	$\mathrm{LI}, \mathrm{L2}, \mathrm{L3}, \ldots$
Standards:	$\mathrm{EN} \mathrm{60947-1/IEC60947-1}$
Material of busbar:	$\mathrm{E}-\mathrm{Cu} 58 \mathrm{~F} 25$
Insulation coordination:	Overvoltage category III
Protection class:	Degree of pollution 2
Impulse voltage strength:	$\mathrm{IP20}$

Dimensions

1) BE5 without auxiliary contact
2) BE5 with auxiliary contact

DESCRIPTION	TYPE NO.	AVAILABLE	ORDER NO.
3 phase busbar for 2xBE5 45mm fork	BE5	- $-\infty=0$	BE590245
3 phase busbar for $3 \times$ BE5 45 mm fork	BE5		BE590345
3 phase busbar for 3xBE5+auxiliary contact, 54 mm fork 63A	BE5	$+\infty=\infty$	BE590354
3 phase busbar for $4 \times$ BE5 45 mm fork	BE5		BE590445
3 phase busbar for 4×BE5+auxiliary contact, 54 mm fork 63A	BE5	$+000$	BE590454
3 phase busbar for $5 \times$ BE5 45 mm fork	BE5	[-000.0.	BE590545
3 phase busbar for 5xBE5+auxiliary contact, 54mm fork 63A	BE5	$+\infty=0$	BE590554

Connection Link for Motor Protection Switches BE5, BE6

Schrack-Info

- Connection links for BE5 and contactors K3-10 up to K3-22 for construction of D.O.L. (direct on line) combinations, coordination type " 1 " 3~400V

BE590011

DESCRIPTION	TYPE NO.	AVAILABLE
Connection block for BE5 to LA3 contactor	BE5	BE5PER NO.

Enclosures for BE5, BE6

Schrack-Info

- Plastic-housings for Motor protection switches series BE5 and BE6

Dimensions

Application

Motor Protection Switches Series BE5, BE6

Enclosures for BE5, BE6
Application

Application

DESCRIPTION	TYPE NO.	AVAILABLE	ORDER NO.
Box for motor protection switch BE5	BE5-G	Beros	BE599654
Box with emergency stop button for BE5	BE5-GNA		
Box for motor protection switch BE6	BE6-G	BE599655	
Padlock for box with main-switch for BE6	BE6-VS	BE695524	

Accessories for BE5, BE6

Schrack-Info

- Accessories for Motor protection switches series BE5 or BE6

Articles			BE082884	BE082882	BE072896
Type			Auxiliary-contact	Auxiliary-contact	Auxiliary-contact
Mounting			front	front	side
For product			BE5 and BE6	BE5 and BE6	BE5 and BE6
Contacts			1 NO	$1 \mathrm{NO}+1 \mathrm{NC}$	$1 \mathrm{NO}+1 \mathrm{NC}$
Rated impulse withstand voltage $\mathrm{U}_{\text {imp }}$			4 kV -AC		6 kV -AC
Overvoltage category / Pollution degree			III/3		
Rated operational voltage			440 V-AC		500 V-AC
			250 V-DC		250 V-DC
Safe isolation according VDE 0106 part 101 and part 101/A1 between auxiliary contacts and main contacts			690 V-AC		690 V-AC
Rated current	AC-15	$220-240 \mathrm{VI}_{\text {e }}$	1 A		3,5 A
		$380-415 \mathrm{VI}$	-	-	2 A
		$440-550 \mathrm{VI}_{\text {e }}$	-	-	1 A
	$\begin{aligned} & \hline \text { DC-13 L/R F } \\ & 100 \mathrm{~ms} \end{aligned}$	24 VI 。	-	-	2 A
		$60 \mathrm{VI}_{\text {e }}$	-	-	1,5 A
		110 VI	-	-	1A
		220 VI	-	-	0,25 A
Lifespan	mechanical		> 10000 operations		> 10000 operations
	electrical		>10000 operations		> 5000 operations
Contact reliability	$\begin{aligned} & \left(\operatorname{at} U_{e}=24 \mathrm{VDC}, \mathrm{U}_{\text {min }}=17 \mathrm{~V}, \mathrm{I}_{\text {min }}=\right. \\ & 5.4 \mathrm{~mA}) \end{aligned}$		Failure rate $<10^{-8}<1$ Failure on 1×10^{8} operations		
Force guided contacts according ZH 1/457			-	-	yes
Short circuit rating without welding of contacts	without meltin		-	-	BM918104
	with melting-fu		$10 \mathrm{AgG} / \mathrm{gl}$	$10 \mathrm{AgG} / \mathrm{gl}$	$10 \mathrm{AgG} / \mathrm{gl}$
Terminals	Single or flexi	wire with ferrule	$0,75-1,5 \mathrm{~mm}^{2}$		0,75-2,5 mm ${ }^{2}$
	Single- or stra	wire AWG	18-16		18-14

Motor Protection Switches Series BE5, BE6

Accessories for BE5, BE6
Application

Circuit Diagrams

DESCRIPTION	TYPE NO.	AVAILABLE	ORDER NO.
Auxiliary contact front, 1NO	BE5/6-HIF 10	- $-0-0$	BE082884
Auxiliary contact front, 1NO+1NC	BE5/6-HIF 11		BE082882
Auxiliary contact side, 1NO+1NC	BE5/6-HIS 11	$+\infty 0$	BE072896
Rotary knob for BE5, lockable with up to 3 pad-locks	BE5-DK		BE590851

Motor Protection Switches BES, Size 00

- Schrack-Info

- Motor protection switch Class 10 for rated current of motors from 0.11 A up to $6.3 \mathrm{~A}(0.04 \mathrm{~kW}$ up to 2.2 kW) at $\mathrm{Icu}=100 \mathrm{kA}$
- Motor protection switch Class 10 for rated current of motors from 5.5A up to $12 \mathrm{~A}(3 \mathrm{~kW}$ up to 5.5 kW) at $\mathrm{Icu}=50 \mathrm{kA}$
- Frontside transverse arranged and "side mounted" auxiliary contacts, shunt release and undervoltage release can be snapped on
- Can be combined with contactors of size 00
- Busbars for up to zu 5 Motor protection switches (without "side mounted" accessories) are available
- Busbars for Motor protection switches with "side mounted" auxiliary contact - on request
- For assembling of BESD with AC or DC-operated contactors size 00 (D.O.L.- Combination) the connection link LSZDD005 has to be used
- Mountable to DIN-rail TS35/TH35 or mounting plate
- Further accessories find attached

Dimensions

BESD

1) Side mounted auxiliary switch, 2-pole - BEZOOOO1,2
2) Auxiliary trip unit: undervoltage release - BEZOOOO6,7; shunt trip - BEZOOO08,9
3) Front mounted auxiliary switch - BEZOOOO3,4
4) Drilling pattern
5) Standard mounting rail TH 35 according to EN 60715
6) Lockable in "OFF" position with 3.5 ... 4.5 mm shackle diameter

Circuit Diagram

Motor Protection Switches Series ALEA BES

Motor Protection Switches BES, Size 00

DESCRIPTION	TYPE NO. AVAILABLE

Motor protection switches size 00 / 100kA (Short circuit switching capacity Icu at 400VAC)

0.11-0.16A, Class 10	BESD		BESD0016
0.14-0.20A, Class 10	BESD		BESD0020
0.18-0.25A, Class 10	BESD		BESD0025
0.22-0.32A, Class 10	BESD	-000-0,	BESD0032
0.28-0.40A, Class 10	BESD		BESD0040
0.35-0.50A, Class 10	BESD	-000-n	BESD0050
0.45-0.63A, Class 10	BESD		BESD0063
0.55-0.80A, Class 10	BESD	$+000-\infty$	BESD0080
0.7-1.00A, Class 10	BESD		BESD0100
0.9-1.25A, Class 10	BESD	$+-\infty 0$	BESD0125
1.1-1.6A, Class 10	BESD	- -1000	BESD0160
1.4-2.0A, Class 10	BESD	$\begin{array}{\|ccc} \hline-00 & -\infty \\ \hline \end{array}$	BESD0200
1.8-2.5A, Class 10	BESD		BESD0250
2.2-3.2A, Class 10	BESD	- -1000	BESD0320
2.8-4,0A, Class 10	BESD	-000-0,	BESD0400
3.5-5,0A, Class 10	BESD	$\begin{aligned} & -000 \\ & \hline 00 \\ & \hline \end{aligned}$	BESD0500
4,5-6,3A, Class 10	BESD	$+\infty=0$	BESD0630

Motor protection switches size 00 / 50kA (Short circuit switching capacity Icu at 400VAC)

| $5.5-8 A$, Class 10 | BESD | BESD0800 | |
| :--- | :--- | :--- | :--- | :--- |
| $7-10 A$, Class 10 | BESD | BESD | $-\infty 000$ |
| $9-12 A, ~ C l a s s ~$ | 0 | BESD 1000 | |

Motor Protection Switches BES, Size 0

BESOO400

Schrack-Info

- Motor protection switch Class 10 for rated current of motors from 0.11 A up to $12.5 \mathrm{~A}(0.04 \mathrm{~kW}$ up to 5.5 kW$)$ at lcu $=100 \mathrm{kA}$
- Motor protection switch Class 10 for rated current of motors from 11 A up to $25 \mathrm{~A}(7.5 \mathrm{~kW}$ up to 11 kW$)$ at Icu $=50 \mathrm{kA}$
- Frontside transverse arranged and "side mounted" auxiliary contacts, signaling switch, shunt release and undervoltage release can be snapped on
- Can be combined with contactors of size 00 and 0
- Busbars for up to zu 5 Motor protection switches (without "side mounted" accessories) are available
- When using busbar for 5 Motor protection switch and summary load current $>63 \mathrm{~A}$, double infeed (left and right end of busbar) is recommended
- Busbars for Motor protection switches with "side mounted" auxiliary contact - on request
- For assembling of BESO with AC or DC-operated contactors size 00 (D.O.L.- Combination) the connection link LSZDD006 has to be used
- For assembling of BESO with AC-operated contactors size 0 (D.O.L.- Combination) the connection link LSZODOO2 has to be used
- For assembling of BESO with DC-operated contactors size 0 (D.O.L.- Combination) the connection link LSZODOO4 has to be used
- Mountable to DIN-rail TS35/TH35 or mounting plate
- Further accessories find attached

Dimensions

1) Side mounted auxiliary switch, 2-pole - BEZOOOO1,2
2) Signal switch
3) Auxiliary trip unit: undervoltage release - BEZOOOO6,7; shunt trip - BEZOOOO8,9
4) Front mounted auxiliary switch - BEZOOOO3,4
5) Drilling pattern
6) Standard mounting rail TH 35 according to EN 60715
7) Lockable in "OFF" position with 3.5 ... 4.5 mm shackle diameter

Motor Protection Switches Series ALEA BES

Motor Protection Switches BES, Size 0

- Circuit Diagram

DESCRIPTION	TYPE NO.

Motor protection switches size 0 / 100kA (Short circuit switching capacity Icu at 400VAC)

Motor protection switches size 0 / 50kA (Short circuit switching capacity Icu at 400 VAC)

Motor Protection Switches BES, Size 2

\square Schrack-Info

- Motor protection switch Class 10 for rated current of motors from 18 A up to 50 A (11 kW up to 22 kW) at lcu $=50 \mathrm{kA}$
- Frontside transverse arranged and "side mounted" auxiliary contacts, signaling switch, shunt release and undervoltage release can be snapped on
- Can be combined with contactors of size 2
- Busbars for up to zu 3 Motor protection switches (without "side mounted" accessories) are available
- When using busbar for 3 Motor protection switches and summary load current > 108A), double infeed (left and right end of busbar) is recommended
- Busbars for Motor protection switches with "side mounted" auxiliary contact - on request
- For assembling of BES2 with AC-operated contactors size 2 (D.O.L.- Combination) the connection link LSZ2D004 has to be used
- For assembling of BES2 with DC-operated contactors size 2 (D.O.L.- Combination) the connection link LSZ2D005 has to be used
- Mountable to DIN-rail TS35/TH35 or mounting plate
- Further accessories find attached

Dimensions

1) Side mounted auxiliary switch, 2-pole - BEZOOOO1,2
2) Signal switch
3) Auxiliary trip unit: undervoltage release - BEZOOOO6,7; shunt trip - BEZOOOO8,9
4) Front mounted auxiliary switch - BEZOOOO3,4
5) Drilling pattern
6) Standard mounting rail TH 35 according to EN 60715
7) Lockable in "OFF" position with 3.5 ... 4.5 mm shackle diameter

Motor Protection Switches Series ALEA BES

Motor Protection Switches BES, Size 2

- Circuit Diagram

DESCRIPTION	TYPE NO. AVAILABLE	ORDER NO.

Motor protection switches size 2 / 50kA (Short circuit switching capacity Icu at 400VAC)

18-25A, Class 10	BES2	[-000-9000,	BES22500
22-32A, Class 10	BES2	-000-n)	BES23200
28-40A, Class 10	BES2	-000-0,	BES24000
36-45A, Class 10	BES2	- $-\times 0$ -	BES24500
40-50A, Class 10	BES2	- -0×0	BES25000

Motor Protection Switches BES, Size 3

■ Schrack-Info

- Motor protection switch Class 10 for rated current of motors from 45A up to 100 A (30kW up to 45 kW) at $\mathrm{Icu}=50 \mathrm{kA}$
- Frontside transverse arranged and "side mounted" auxiliary contacts, signaling switch, shunt release and undervoltage release can be snapped on
- Can be combined with contactors of size 3
- For assembling of BES3 with AC-operated contactors size 3 (D.O.L.- Combination) the connection link LSZ3D004 has to be used
- For assembling of BES3 with DC-operated contactors size 3 (D.O.L.- Combination) the connection link LSZ3D003 has to be used
- Mountable to DIN-rail TS35/TH35, TS75/TH75 or mounting plate
- Further accessories find attached

Dimensions

1) Side mounted auxiliary switch, 2-pole - BEZOOOO1,2
2) Signalling switch (SO ... S3) side mounted - BEZOOOO5
3) Auxiliary trip unit: undervoltage release - BEZOO006,7; shunt trip - BEZOO008,9
4) Front mounted auxiliary switch - BEZOOOO3,4
5) Drilling pattern
6) Standard mounting rail TH 35 according to EN 60715
7) For mounting on TH 75 standard mounting rail
8) Allen screw 4 mm
9) Lockable in "OFF" position with 3.5 ... 4.5 mm shackle diameter

Motor Protection Switches Series ALEA BES

Motor Protection Switches BES, Size 3

- Circuit Diagram

DESCRIPTION	TYPE NO. AVAILABLE	ORDER NO.

Motor protection switches size 3 / 50kA (Short circuit switching capacity Icu at 400VAC)

45-63A, Class 10	BES3	-000-0.0)	BES36300
57-75A, Class 10	BES3	-000-m	BES37500
70-90A, Class 10	BES3		BES39000
80-100A, Class 10	BES3	-000-0	BES39999

Auxiliary Contacts for Motor Protection Switches

Schrack-Info

- Frontside or "side mounted" auxiliary contacts for signaling of operating state "ON" or "OFF"
- Arranged at left side of Motor protection switch
- Fitting to all sizes
- Busbars for Motor protection switches with " side arranged" auxiliary contact only is realisable by special version of busbars - on request

Circuit Diagrams

1) Lateral auxiliary switch (side mounted)

BEZOOOO1-1NO + 1NC
BEZOOOO2-2NO
2) Transverse auxiliary switch (front mounted)

BEZOOOO3-1NO + 1NC
BEZOOOO4-2NO

DESCRIPTION	TYPE NO.	AVAILABLE	ORDER NO.
Auxiliary Contact, side mounted, $1 \mathrm{NO}+1 \mathrm{NC}$	BEZO	-000-6	BEZ00001
Auxiliary Contact, front mounted, $1 \mathrm{NO}+1 \mathrm{NC}$	BEZO	-0000]	BEZ00003
Auxiliary Contact, side mounted, 2 NO	BEZO	- -00000	BEZ00002
Auxiliary Contact, front mounted, 2 NO	BEZO	$+\infty=-\infty$	BEZ00004

Motor Protection Switches Series ALEA BES

Signaling Switch for Motor Protection Switches

- Schrack-Info
- Signaling switch for signaling of "Tripped by overload or short circuit" for Motor protection switch of size 0 up to 3
- Left side mounted
- When necessary to monitor Motor protection switch of size 00 for overload or short circuit, the Motor protection switch size 00 has to be replaced by such of size 0
- Signaling switch is provided with 2 contacts for "overload" ($1 \mathrm{NO}+1 \mathrm{NC}$) and 2 contacts for "short circuit" ($1 \mathrm{NO}+1 \mathrm{NC}$)
- Busbars for Motor protection switches with side arranged signaling switch are not available

Circuit Diagram

Switching Example

$B E S O$ to $B E S 3$ motor protection switches with $B E Z O 0005$ signalling switch
Separate "tripped" and "short-circuit" signals:
S1 Signalling switch
Q1 Motor protection switch
F1 Fuse (gl/gG), max. 10A
H1 Signal lamp "Short-circuit"
H2 Signal lamp "Overload" or "Tripping by auxiliary trip unit"

DESCRIPTION	TYPE NO.	AVAILABLE	ORDER NO.
Signalling switch 1 NO +1 NC, for BES size $0,2,3$	BEZO	-500	BEZ00005

Under Voltage Release Motor Protection Switches

- Schrack-Info
- Under voltage release unit for remote "switching off" the Motor protection switches (closed-circuit principle)
- Right side mounted
- Fitting to all sizes
- Only one release unit can be mounted at Motor protection switch (either undervoltage or shunt release)
- Busbars for Motor protection switches with side arranged release unit are not available

Connection and Control Diagram

SO, S1, S2 OFF pushbutton in the system

Q1 Motor protection switch
S Auxiliary switch of the motor protection switch Q1
F1; F2 Fuse (gl/gG) max. 10A
F3 Shunt trip
F4 Undervoltage releases

DESCRIPTION	TYPE NO.	AVAILABLE	ORDER NO.
Under voltage release $230 \mathrm{VAC} / 50 \mathrm{~Hz}, 240 \mathrm{VAC} / 60 \mathrm{~Hz}$	BEZO	BEZ00006	
Under voltage release $400 \mathrm{VAC} / 50 \mathrm{~Hz}, 440 \mathrm{VAC} / 60 \mathrm{~Hz}$	BEZO	BEZ0000	

Shunt Release for Motor Protection Switches

Schrack-Info

- Shunt release unit for remote "switching off" the Motor protect - Right side mounted ion switches (open-circuit principle)
- Right side mounted
- Fitting to all sizes
- Only one release unit can be mounted at Motor protection switch (either undervoltage or shunt release)
- Busbars for Motor protection switches with side arranged release unit are not available

Connection and Control Diagram

S0, S1, S2 OFF pushbutton in the system
Q1 Motor protection switch
S Auxiliary switch of the motor protection switch Q1
F1; F2 Fuse ($\mathrm{gL} / \mathrm{gG}$) max. 10A
F3 Shunt trip
F4 Undervoltage releases

DESCRIPTION	TYPE NO.	AVAILABLE	ORDER NO.
Shunt trip $20-24 V A C, 50 / 60 \mathrm{~Hz}$	BEZO	BEZO0008	
Shunt trip $210-240 \mathrm{VAC}, 50 / 60 \mathrm{~Hz}$	BEZO	BEZ00009	

Motor Protection Switches Series ALEA BES

Housings and Locking Plate for Motor Protection Switches

BEZOO112

BEZOOO14

Schrack-Info

- All housings fulfill the protection degree IP55, the rated operational voltage Ue for built-in Motor protection switches is reduced from 690 VAC to 500VAC
- Housings for Motor protection switch of size 00 with membrane (optional Emergency -Stop mushroom button available)
- Housings for Motor protection switch of size 0-2 are fitted with lockable black or red/yellow rotary handle
- Housings for Motor protection switch of size 3 are not available
- All housings are fitted with Neutral conductor- and PE-terminal
- The housings are prepared with cable entry cut-outs for metric cable glands at upper side and bottom of housing. Also the rear sides of housings are prepared with cable entry cut-outs
- Installation of Motor protection switches with Signaling switch is not possible
- Installation of Motor protection switches with front or side mounted auxiliary contacts is possible at all housings
- Installation of Motor protection switch with auxiliary contacts and overvoltage/shunt release in housings of size 2 is possible
- Housings of size 00 with membrane can be fitted with an additional locking plate (for 3 padlocks, 8 mm shackle-diameter)

Dimensions

[^35]Housings and Locking Plate for Motor Protection Switches
Dimensions

BEZOO112 rotary handle, BEZOO113 rotary handle for emergency stop for motor protection switches size 0

1) Knock-outs for M25
2) Knock-outs for rear cable entry M20
3) Opening for padlock with shackle diameter max. $6-8 \mathrm{~mm}$
\square Dimensions

BEZOO212, BEZOO213

BEZOO212 rotary handle, BEZOO213 rotary handle for emergency stop for motor protection switches size 2

1) Knock-outs for M32 (left)
2) Knock-outs for $M 40$ (right)
3) Knock-outs for rear cable entry M32
4) Opening for padlock with shackle diameter max. 6 ... 8 mm

Motor Protection Switches Series ALEA BES

Housings and Locking Plate for Motor Protection Switches

DESCRIPTION	TYPE NO.	AVAILABLE	ORDER NO.
Housings			
Insulated enclosure with membrane, size 00, IP55	BEZO	[000-98)	BEZ00012
Emergency Stop button for insulated enclosure, size 00, IP55	BEZO		BEZ00013
Insulated enclosure with rotary handle, size 0, IP55	BEZO	- -0×0	BEZOO112
Insulated enclosure with rotary handle, size 2, IP55	BEZO		BEZOO212
Insulated enclosure with Emergency Stop, size 2, IP55	BEZO		BEZOO213
Locking plate			
Locking plate for 3 padlocks, size 00	BEZO		BEZOOO14

Bus Bars for Motor Protection Switches

Schrack-Info

- Busbars for Motor protection switches without side mounted accessories, for size 00 up to 2
- Maximum rated current In for busbars size 00/0 ... 63A, for size 2 ... 108A
- Motor protection switches size 00 and 0 can not wired with the same busbar because of different position (hight) of their terminals
- Busbars for for Motor protection switches with side mounted auxiliary contacts - on request
- Busbars for Motor protection switch with side mounted Signaling switch are not available
- Busbars for Motor protection switches of size 3 are not available

Dimensions

Dimensions

DESCRIPTION	TYPE NO.	AVAILABLE	ORDER NO.
Busbar for 2 BESD/BESO	BEZO	- $-\infty$	BEZ00017
Busbar for 3 BESD/BESO	BEZO	[-0000,	BEZ00018
Busbar for 4 BESD/BESO	BEZO	-800-6	BEZOOO20
Busbar for 5 BESD/BESO	BEZO	- -0×0	BEZ00021
Busbar for 2 BES2	BEZO		BEZOO217
Busbar for 3 BES2	BEZO		BEZOO218

Covers for Spare Places of Motor Protection Switches

Rotary Operating Mechanisms (Door Coupling) for Motor Protection Switches

BEZOOO11

- Schrack-Info
- Door couplig- rotary handles for Motor protection switches size 0 up to 3
- Available in black or for "Emergency Off" applications in red/yellow
- Included door(cover) interlock against opening the housing at position "ON" of Motor protection switch
- Lockable in "Off"-position with in maximum 3 padlocks, shackle diameter 8 mm
- PE-terminal for wires up to $35 \mathrm{~mm}^{2}$ and support bracket for actuation axle included

Dimensions

BEZOOO10/11 for motor protection switches size 0, 2, 3
Long shaft (with bracket) ${ }^{3}$
A) Drilling pattern

1) Lockable in neutral position with max. 8 mm shackle diameter.
2) Mounted with screw cap.
3) Supplied with a shaft leng
of 330 mm ; can be adjusted by shortening the shaft
4) Grounding terminal $35 \mathrm{~mm}^{2}$ and sheet-metal bracket for shaft.

DESCRIPTION	TYPE NO.	AVAILABLE	ORDER NO.
Door coupling rotary handle for size 0-3	BEZO	BEZ00010	
Door coupling rotary handle Emergency-Stop, for size 0-3	BEZO	BEZOOO11	

Motor Protection Switches Series ALEA BES

Feed Terminals for Motor Protection Switches

- Schrack-Info
- Feed terminals for busbar of Motor protection switch size 0 up to 2
- Feed terminals size 00 and 0 for in maximum Anschlussquerschnitt Ye and Ym $25 \mathrm{~mm}^{2}$, Yf $16 \mathrm{~mm}^{2}$
- Feed terminals size 2 for in maximumen Anschlussquerschnitt Ye and Ym 50mm², Yf $35 \mathrm{~mm}^{2}$
- For feeding busbar, centered (middle) position of terminal or - when summary load current exceeds rated current of busbar - both sided arrangement of feeding terminals is recommended

Dimensions

1) Bus bars
2) Feed terminals

DESCRIPTION	TYPE NO.	AVAILABLE	ORDER NO.
Feed terminal 3-phase up to $25 \mathrm{~mm}^{2}$, for BES size 00	BEZO	-800-0	BEZO0016
Feed terminal 3-phase up to $25 \mathrm{~mm}^{2}$, for BES size 0	BEZO	-0000)	BEZ00116
Feed terminal 3-phase up to $50 \mathrm{~mm}^{2}$, for BES size 2	BEZO		BEZOO216

M Motor Protection Switches Series BES - Overview

Type Applications	BESD / BESO / BES2 / BES3			
System protection	yes "			
Motor protection	yes			
Size	00, 0, 2, 3			
Rated current In				
- Size 00	up to 12A			
- Size 0	up to 25A			
Size 2	up to 50A			
- Size 3	up to 100A			
Rated operational voltage Ue according to IEC	$690 \mathrm{VAC}^{21}$			
Rated frequency	$50 / 60 \mathrm{~Hz}$			
Trip class	Class 10			
Thermal overload release	$\begin{gathered} 0.11 \ldots 0.16 \mathrm{~A} \\ \text { up to } 80 \ldots .100 \mathrm{~A} \end{gathered}$			
Electronic trip units a multiple of the rated current	13 Times			
Short-circuit breaking capacity Icu at 400VAC	50/100kA			
Accessories for sizes	00	0	2	3
Auxiliary switches	yes	yes	yes	yes
Signalling switches	--	yes	yes	yes
Undervoltage releases	yes	yes	yes	yes
Shunt trip units	yes	yes	yes	yes
Insulated three-phase busbar systems	yes	yes	yes	--
Busbar adapters	yes	yes	yes	yes
Door-coupling rotary operating mechanisms	--	yes	yes	yes
Link modules	yes	yes	yes	yes
Enclosures for surface mounting	yes	yes	yes	--
Feed terminal	yes	yes	yes	--

1) For symmetrical loading of the three phases
2) 500 VAC with moulded-plastic enclosure
yes: Has this function or can use this accessory.
-- : does not have this function or cannot use this accessory.

Mounting location and function

The BES motor protection switches have three main contact elements. In order to achieve maximum flexibility, auxiliary switches, signalling switches, auxiliary trip units and door coupling rotary operating mechanism can be supplied separately.
These components can be fitted as required on the motor protection switches without using tools.

Front side	Transverse auxiliary switches	An auxiliary switch block can be inserted transversely on the front.
Notes:	$1 \mathrm{NO}+1 \mathrm{NC} / 2 \mathrm{NO}$	The overall width of the motor protection switches remains unchanged.

A maximum of 4 auxiliary contacts with auxiliary switches can be attached to each motor protection switch.

A maximum of 4 auxiliary contacts with auxiliary switches can be attached to each motor protection switch. Auxiliary switches (2 contacts) and signalling switches can be mounted separately or together.	Lateral auxiliary switches $\begin{aligned} & \text { (2 contacts) } \\ & 1 \mathrm{NO}+1 \mathrm{NC} / 2 \mathrm{NO} \end{aligned}$	One of the two auxiliary switches can be mounted laterally for each motor protection switches The contacts of the auxiliary switch close and open together with the main contacts of the motor protection switches. The overall width of the lateral auxiliary switch with 2 contacts is 9 mm .
	Signalling switches for sizes $\mathbf{0 , 2} 2$ and $\mathbf{3}$ Tripping $1 \mathrm{NO}+1 \mathrm{NC}$ Short-circuit $1 \mathrm{NO}+1 \mathrm{NC}$	One signalling switch can be mounted at the side of each motor protection switches with a rotary operating mechanism. The signalling switch has two contact systems. One contact system always signals tripping irrespective of whether this was caused by a short-circuit, an overload or an auxiliary trip unit. The other contact system only switches in the event of a short-circuit. There is no signalling as a result of switching off with the handle. In order to be able to switch on the motor protection switches again after a short-circuit, the signalling switch must be reset manually after the error cause has been eliminated. The overall width of the signalling switch is 18 mm .
Right-hand side Notes:	Shunt trip units	For remote-controlled tripping of the motor protection switches. The release coil should only be energized for short periods (see schematics).
One auxiliary trip unit can be mounted per motor protection switch.	or	
	Undervoltage releases	Trips the motor protection switches when the voltage is interrupted and prevents the motor from being restarted accidentally when the voltage is restored. Used for remote-controlled tripping of the motor protection switches. Particularly suitable for EMERGENCY-STOP disconnection by way of the corresponding EMERGENCYSTOP pushbutton according to DIN VDE 0113.

Motor Protection Switches Series BES - General Information

Schrack-Info

Motor Protection Switches BES are used for the switching and protecting of 3 -phase motors up to 45 kW at 400 VAC , as well as for electrical consumers up to 100 A .

TYPE OF CONSTRUCTION

The motor protection switches are available in four sizes:

- Size 00 - width 45 mm , max. rated current 12 A, At 400 VAC suitable for induction motors up to 5.5 kW
- Size 0 - width 45 mm , max. rated current $25 \mathrm{~A}, \mathrm{At} 400 \mathrm{VAC}$ suitable for induction motors up to 11 kW
- Size 2 - width 55 mm , max. rated current 50 A, At 400 VAC suitable for induction motors up to 22 kW
- Size 3 - width 70 mm , max. rated current $100 \mathrm{~A}, \mathrm{At} 400 \mathrm{VAC}$ suitable for induction motors up to 45 kW

SCREW TERMINALS

BES motor protection switches of sizes 00 and 0 are fitted with terminals with captive screws and clamping pieces, allowing the connection of 2 conductors with different cross-sections. The box terminals of the size 2 and 3 motor protection switches also enable 2 conductors with different cross-sections to be connected. With the exception of size 3 motor protection switches which are equipped with 4 mm Allen screws, all terminal screws are tightened with a Pozidriv screwdriver size 2 . The box terminals of the size 3 motor protection switches can be removed in order to connect conductors with cable lugs or connecting bars. A terminal cover is available as touch protection and to ensure that the required clearances and creepage distances are maintained if the box terminals are removed.

MOUNTING

The motor protection switches are snap-fitted an a 35 mm standard mounting rail. A standard mounting rail with a height of 15 mm is required for size 3 motor protection switches. A 75 mm standard mounting rail can be used as an alternative for size 3 . Size 2 and 3 motor protection switches can also be screwed directly onto a base plate. When mounting the motor protection switches, the following clearances must be maintained to grounded or live parts and to cable ducts made of molded plastic.

- Clearences to Grounded or Live Parts

Motor protection switches / circuit breakers			Distance to grounded or live parts acc. To IEC 60947-2		
Type	Size	I 。	Y	X	Z
		\checkmark	mm	mm	mm
BESD	00	up to 690	20	70	9
BESO	0	up to 500	30	90	9
		up to 690	50	90	30
BES2	2	up to 690	50	140	30
BES3	3	up to 240	50	167	10
		up to 440	70	167	10
		up to 500	110	167	10
		up to 690	150	167	30

TRIP UNITS

BES motor protection switches are equipped with

- inverse-time delayed overload release based on the bimetal principle
- instantaneous electronic trip units (electromagnetic short-circuit releases)

The Motor protection switch BES can be adjusted to the rated current of the load.
Its short circuit release is automatically fixed to 13 times of rated current, to enable an unproblematic "running up" of the motor. When BES size 00 trips, its rocker changes to position "OFF", at BES size 0 up to size 3 the rotary operating handle changes to position "TRIP" and optical indicates a tripping.
Before switching on again, the handle has to be moved mechanical in the "OFF"-position, to prevent a unwanted switching on to an existing short circuit. The tripping of BES with rotary handle can a be monitored electrically by an additional signalling switch BEZOOOO5.

TRIP CLASSES

The trip classes of thermally delayed trip units are based on the tripping time (t A) at 7.2 times the set current in cold state (excerpt from IEC 60947-4):

- CLASS 10: $4 \mathrm{~s}<\dagger \mathrm{A}<10 \mathrm{~s}$

The motor protection switches must trip within this time!

OPERATING MECHANISMS

Size 00 motor protection switches are actuated by a rocker operating mechanism and size 0,2 and 3 motor protection switches by a rotary operating mechanism. If the motor protection switches trips, the rotary operating mechanism switches to the tripped position to indicate this. Before the motor protection switches is reclosed, the rotary operating mechanism must be reset manually to the 0 position. Only then can the motor protection switches be set again to the I position. In the case of motor protection switches with rotary operating mechanisms, an electrical signal can be output by a signalling switch to indicate that the motor starter protector has tripped. All operating mechanisms can be locked in the 0 position with a padlock (shackle diameter 3.5 mm to 4.5 mm). The motor protection switches isolating function complies with IEC 60947-2.

PREVENTION OF UNINTENDED TRIPPING

In order to prevent premature tripping due to the integrated phase failure sensitivity, motor protection switches should always be connected to ensure current flows through all three main current paths.

SHORT-CIRCUIT PROTECTION

If a short-circuit occurs, the short-circuit releases of BES motor protection switches isolate the faulty load feeder from the network and thus prevent further damage. Motor protection switches with a short-circuit breaking capacity of 50 kA or 100 kA are virtually short-circuit resistant at a voltage of 400 VAC , since higher short-circuit currents are not to be expected in practice.

MOTOR PROTECTION

The tripping characteristics of BES motor protection switches are designed mainly to protect induction motors. The motor protection switches are therefore also referred to as motor circuit breakers. The rated current In of the motor to be protected is set on the setting scale. Factory setting of the short-circuit release is 13 times the rated current of the motor protection switches. This permits trouble-free starting and ensures that the motor is properly protected. The phase failure sensitivity of the motor protection switches ensures that it is tripped in time in the event of a phase failure and overcurrents that occur as a result in the other phases. Motor protection switches with thermal overload releases are normally designed in accordance with trip class 10.

Motor Protection Switches Series BES - General Information

SYSTEM PROTECTION

The BES motor protection switches for motor protection are also suitable for plant protection. In order to prevent premature tripping due to phase failure sensitivity, the three conducting paths must always be uniformly loaded. The conducting paths must be connected in series the case of single-phase loads.

MAIN AND EMERGENCY-STOP SWITCHES

The BES motor protection switches comply with the isolating function to IEC 60947-2, therefore they can be used - taking IEC 60204 - 1 into account - as main and EMERGENCY-STOP switches. BES door-coupling rotary operating mechanisms for heavy duty also comply with the requirements for the isolating function.

USE IN IT SYSTEMS (IT NETWORKS)
BES motor protection switches are suitable for operation in IT systems according to IEC 60947-2. In the event of a 3-pole short-circuit, their response in this system is the same as in others: Therefore, the same short-circuit breaking capacity $I_{c u}$ and $I_{c s}$ applies, see "Technical specifications". An initial fault (ground fault) does not necessarily force immediate disconnection of the network when operating IT systems. If a second independent error occurs (ground fault), the switching capacity of the motor protection switches might be reduced. This is the case if both ground faults occur in different phases and if one of the ground faults occurs on the input side and the other on the outgoing terminal of the motor protection switches. In order to maintain the short-circuit function of the motor protection switches even with two independent ground faults (double ground faults), the reduced short-circuit breaking capacity with double ground faults must be taken into account in IT systems I culT (see "Technical specifications"). If a ground fault is instantaneously recognized and remedied (groundfault monitoring), the risk of double ground fault and thus reduced short-circuit breaking capacity I culT can be minimized.

SWITCHING OF DC CURRENTS

BES motor protection switches for alternating currents are also suitable for DC switching. The maximum permissible DC voltage per conducting path must, however, be adhered to. Higher voltages require a series connection with 2 or 3 conducting paths. The response values of the overload release remain unchanged; the response values of a short-circuit release increase by approximately 30% for DC. The example circuits for DC switching can be seen in the table below.

Example Circuit for Size 00 to 3 BES

Motor Protection Switches

	Maximum permitted DC voltage	Notes
1	Ue	2-pole switching, non-grounded system If there is no possibility of a ground fault, or if every ground fault is rectified immediately (ground-fault monitoring), then the maximum permitted DC voltage can be tripled.
2	300VDC	2-pole switching, grounded system The grounded pole is always assigned to the individual conducting path, so that there are always 2 conducting paths in series in the event of a ground fault.
3	450VDC	1-pole switching, grounded system 3 conducting paths in series. The grounded pole is assigned to the unconnected conducting path.
1) It is assumed that this circuit always provides safe disconnection even in the event of a double ground fault that bridges two contacts.		

Technical Specification - Motor Protection Switches Series BES

Motor Protection Switches Series BES - Size 00 up to 3

This table shows the rated ultimate short-circuit breaking capacity I_{cv} and the rated service short-circuit breaking capacity I_{cs} of the BES motor protection switches with different inception voltages dependent of the rated current I_{n} of the motor protection switches. Motor protection switches infeed is permissible at the upper or lower terminals without restricting the rated data. If the short-circuit current at the place of installation exceeds the rated short-circuit breaking capacity of the motor protection switches as specified in the table, a back-up fuse is required. Alternatively, a motor protection switches with a limiter function can be connected upstream. The maximum rated current for the back-up fuse is specified in the tables. The rated ultimate short-circuit breaking capacity then applies as specified on the fuse.

Motor Protection Switches Series BES - Size 00 up to 3

BES motor protection switches are suitable for operation in IT systems. Values valid for triple-pole short-circuit are $I_{c u}$ up to $I_{c s}$. In case of double ground fault on different phases at the input and output side of a motor protection switches, the special short-circuit breaking capacity $I_{\text {cult }}$ applies. The specifications in the table below apply to BES motor protection switches. In the coloured areas, $\mathrm{I}_{\text {cult }}$ is 100 kA , or in some ranges it is 50 kA . Therefore the motor protection switches are short-circuit resistant in these ranges. If the short-circuit current at the place of installation exceeds the rated short-circuit breaking capacity of the motor protection switches as specified in the table, a back-up fuse is required. The maximum rated current for the back-up fuse is specified in the tables. The rated short-circuit breaking capacity then applies as specified on the fuse.

Technical Specification - Motor Protection Switches Series BES

Motor Protection Switches Series BES - Size 00 up to 3

Max. switching frequency per hour (motor starts)
1/h
2) Above $+60^{\circ} \mathrm{C}$ current reduction
3) 500 V with moulded-plastic enclosure.
4) Terminal compartment IPOO.
5) With appropriate accessories.

Motor Protection Switches Series BES - Size 00 up to 3

Type		BESD	BESO	BES2	BES3
Connection type		Screw terminals		Screw terminals with box terminals	
Terminal screw		Pozidriv size 2		Pozidriv size 2	4 mm Allen screw
Prescribed tightening torque	Nm	0.8...1.2	2...2.5	3...4.5	4... 6
Conductor cross-sections (1 or 2 conductors connectable)					
- Solid	mm^{2}	$\begin{gathered} 2 \times(0.5 \ldots 1.5)^{4)} \\ 2 \times(0.75 \ldots 2.5)^{4)} \\ \hline \end{gathered}$	$\begin{aligned} & 2 \times(1 \ldots 2.5)^{4} \\ & 2 \times(2.5 \ldots 6)^{4} \\ & \hline \end{aligned}$	$2 \times(0.75 \ldots 16)$	$2 \times(2.5 \ldots .16)$
Finely stranded with end sleeve	mm^{2}	$\begin{gathered} \hline 2 \times(0.5 \ldots 1.5)^{4)} \\ \left.2 \times(0.75 \ldots .5)^{4}\right) \\ \hline \end{gathered}$	$\begin{aligned} & \hline 2 \times(1 \ldots 2.5)^{4} \\ & 2 \times(2.5 \ldots 6)^{4} \\ & \hline \end{aligned}$	$\begin{aligned} & 2 \times(0.75 \ldots 16), \\ & 1 \times(0.75 \ldots 25) \end{aligned}$	$\begin{aligned} & \hline 2 \times(2.5 \ldots 35), \\ & 1 \times(2.5 \ldots 50) \\ & \hline \end{aligned}$
- Stranded	mm^{2}	$\begin{gathered} \hline 2 \times(0.5 \ldots 1.5)^{44} \\ 2 \times(0.75 \ldots 2.5)^{4} \\ \hline \end{gathered}$	$\begin{aligned} & 1 \times(1 \ldots 2.5)^{4} \\ & 2 \times(2.5 \ldots 6) \\ & \hline \end{aligned}$	$\begin{gathered} 2 \times(0.75 \ldots 25), \\ 1 \times(0.75 \ldots 35) \end{gathered}$	$\begin{aligned} & 2 \times(10 \ldots 50), \\ & 1 \times(10 \ldots 50) \end{aligned}$
- AWG cables, solid or stranded	AWG	$2 \times(18 \ldots 14)$	$2 \times(14 . . .10)$	$\begin{aligned} & 2 \times(18 \ldots 2), \\ & 1 \times(18 \ldots 2) \end{aligned}$	$\begin{aligned} & 2 \times(10 \ldots 1 / 0), \\ & 1 \times(10 \ldots 2 / 0) \end{aligned}$
Ribbon cable conductors (number \times width \times thickness)	mm	--		$2 \times(6 \times 9 \times 0.8)$	
Removable box terminals ${ }^{1 /}$ - With copper bars ${ }^{21}$ - With cable lugs ${ }^{31}$		--			$\begin{gathered} 18 \times 10 \\ \text { up to } 2 \times 70 \\ \hline \end{gathered}$
Connection type		Cage Clamp terminals on request			
Conductor cross-sections (1 or 2 conductors connectable) - Solid - Finely stranded with end sleeve - Finely stranded without end sleeve - AWG cables, solid or stranded	$\begin{aligned} & \mathrm{mm}^{2} \\ & \mathrm{~mm}^{2} \\ & \mathrm{~mm}^{2} \\ & \text { AWG } \end{aligned}$	$\begin{gathered} 2 \times(0.25 \ldots 2.5) \\ 2 \times(0.25 \ldots . .1 .5) \\ 2 \times(0.25 \ldots . .2 .5) \\ 2 \times(24 \ldots .14) \end{gathered}$	--		
Max. external diameter of the cable insulation	mm	3.6			

1) Cable-lug and busbar connection possible after removing the box terminals.
2) If bars larger than $12 \mathrm{~mm} \times 10 \mathrm{~mm}$ are connected, a terminal cover is needed to comply with the phase clearance (on request).
3) If conductors larger than $25 \mathrm{~mm}^{2}$ are connected, a terminal cover is needed to comply with the phase clearance (on request).
4) If two different conductor cross-sections are connected to one clamping point, both cross-sections must lie in the range specified.

If identical cross-sections are used, this restriction does not apply.

Technical Specification - Motor Protection Switches Series BES

Motor Protection Switches Series BES - Size 00 up to 3

Motor protection switches of the BES series are approved for UL/CSA and according to UL 508 and CSA C22.2 No. 14 they can be used on their own or as a load feeder in combination with a contactor. These motor protection switches can be used as "Manual Motor Controllers" for "Group Installations", as
"Manual Motor Controllers Suitable for Tap Conductor Protection in Group Installations" and as "Self-Protected Combination Motor Controllers" (Type E).
BES motor protection switches as "Manual Motor Controllers"
If used as a "Manual Motor Controller", the motor protection switches is always operated in combination with an upstream short-circuit protection device.
Approved fuses or a circuit breaker according to UL489/CSAC22.2 No. 5-02 can be used. These devices must be dimensioned according to the National Electrical
Code (UL) or Canadian Electrical Code (CSA).

Motor protection switches		hp rating ${ }^{1 /}$ for $\mathrm{FLA}^{2)}$		Rated current	240VAC		480VAC		600VAC	
		max.		I_{n}	UL	CSA	UL	CSA	UL	CSA
					$\mathrm{Ibc}^{3}{ }^{\text {a }}$	$\mathrm{Ibc}^{3}{ }^{\text {a }}$	$\mathrm{Ibc}^{3 /}$	$\mathrm{Ibc}^{3}{ }^{\text {a }}$	$\mathrm{Ibc}^{3 /}$	$\mathrm{Ibc}^{3}{ }^{\text {a }}$
Type	V	1-phase	3 -phase	A	kA	kA	kA	kA	kA	kA

Size 00										
BESD				0.16 ... 2	65	65	65	65	10	10
				2.5	65	65	65	65	10	10
$\begin{aligned} & \text { FLA }^{2)} \text { max. 12A, } \\ & 600 \mathrm{~V} \end{aligned}$	115	1/2	--	3.2	65	65	65	65	10	10
	200	11/2	3	4	65	65	65	65	10	10
NEMA size 00	230	2	3	5	65	65	65	65	10	10
	460	--	71/2	6.3	65	65	65	65	10	10
	575/600	--	10	8	65	65	65	65	10	10
				10	65	65	65	65	10	10
				12	65	65	65	65	10	10

Size 0										
BESO				0.16 ... 3.2	65	65	65	65	30	30
				4	65	65	65	65	30	30
FLA ${ }^{2)}$ max. 25A,600V	115	2	--	5	65	65	65	65	30	30
	200	3	5	6.3	65	65	65	65	30	30
NEMA size 1	230	3	71/2	8	65	65	65	65	30	30
	460	--	15	10	65	65	65	65	30	30
	575/600	--	20	12.5	65	65	65	65	30	30
				16	65	65	65	65	10	10
				20	65	65	65	65	10	10
				22	65	65	65	65	10	10
				25	65	65	65	65	10	10

Size 2										
BES2				16	65	65	65	65	30	25
				20	65	65	65	65	30	25
FLA ${ }^{2)}$ max. 50A,	115	3	--	25	65	65	65	65	30	25
600 V	200	71/2	15	32	65	65	65	65	30	25
NEMA size 2	230	10	20	40	65	65	65	65	30	25
	460	--	40	45	65	65	65	65	30	25
	575/600	--	50	50	65	65	65	65	30	25
Size 3										
BES3				16	65	65	65	65	30	30
				20	65	65	65	65	30	30
FLA ${ }^{2)}$ max. 99A,	115	71/2	--	25	65	65	65	65	30	30
600 V	200	20	30	32	65	65	65	65	30	30
NEMA size 3	230	20	40	40	65	65	65	65	30	30
	460	--	75	50	65	65	65	65	30	30
	575/600	--	100	63	65	65	65	65	30	30
				75	65	65	65	65	30	30
				90	65	65	65	65	10	10
				100	65	65	65	65	10	10

1) hp rating = Power rating in horse power (maximum motor rating).
2) FLA = Full Load Amps/Motor full load current.
3) Complies with "short-circuit breaking capacity" according to UL.

Motor Protection Switches Series BES - Size 00 up to 3

The application "Manual Motor Controllers" is only accepted by UL. CSA does not recognize this approval!
When application "Manual Motor Controller" according CSA is prescribed - an upstream short-circuit protection device - e.g. a certified pre-fuse or a motor protection switch according UL489 has to be used. These devices must apply to the current national regulations.

Circuit breaker		hp ro		Rated current		Up to 480VAC	Up to 600VAC
Type	V	1-phase	3 -phase	A	kA	kA	kA
Size 00							
BESD				0.16 ... 0.8	65	65	10
				1	65	65	10
FLA ${ }^{2)}$ max. 8A,	115	1/3	--	1.25	65	65	10
480 V	200	3/4	2	2	65	65	10
NEMA size 0	230	1	2	2.5	65	65	10
	460	--	5	3.2	65	65	10
	575/600	--	--	4	65	65	10
				5	65	65	10
				6.3	65	65	10
				8	65	65	10
Size 0							
BESO				0.16 ... 1.6	65	65	30
				2	65	65	30
FLA ${ }^{2 /}$ max.	115	2	--	2.5	65	65	30
22A, 480V	200	3	5	3.2	65	65	30
12.5A, 600 V	230	3	$71 / 2$	4	65	65	30
	460	--	15	5	65	65	30
NEMA size 1	575/600	--	10	6.3	65	65	30
				8	65	65	30
				10	65	65	30
				12.5	65	65	30
Size 2							
BES3				16	65	65	25
				20	65	65	25
FLA ${ }^{21}$ max.	115	3	--	25	65	65	25
50A, 600V	200	$71 / 2$	15	32	65	65	25
NEMA size 2	230	10	20	40	65	65	25
	460	--	40	45	65	65	25
	575/600	--	50	50	65	65	25
Size 3							
BES4				16	65	65	30
				20	65	65	30
FLA ${ }^{2 \prime}$ max.		$71 / 2$	--	25	65	65	30
100A, 480V	200	20	30	32	65	65	30
75A, 600V	230	20	40	40	65	65	30
	460	--	75	50	65	65	30
NEMA size 3	575/600	--	75	63	65	65	30
				75	65	65	30
				90	65	65	--
				100	65	65	--

[^36]Technical Specification - Motor Protection Switches Series BES

Motor Protection Switches Series BES - Accessories

Type		Lateral auxiliary switches with $1 \mathrm{NO}+1 \mathrm{NC}$ and signalling switch	Transverse auxiliary switches with $1 \mathrm{NO}+1 \mathrm{NC}$
Max. rated voltage			
Acc. to NEMA (UL)	VAC	600	250
Acc. to NEMA (CSA)	VAC	600	250
Uninterrupted current	A	10	2.5
Switching capacity		A600	C300
		Q300	R300

Front transverse auxiliary switches (front mounted)
Switching capacity for different voltages
$1 \mathrm{NO}+1 \mathrm{NC}, 2 \mathrm{NO}$
Rated operational current I_{e}

- At AC-15, alternating voltage		
- 24 V	A	2
-230V	A	0.5
- 400V	A	--
-690V	A	--
- At AC-12 $=1 \mathrm{I}_{\text {th }}$, alternating Voltage		
- 24V	A	2.5
- 230V	A	2.5
- 400V	A	--
- 690V	A	--
- At DC-13, direct voltage L/R 200ms		
- 24V	A	1
- 48 V	A	0.3
-60V	A	0.15
- 110V	A	--
-220V	A	--
Minimum load capacity	V	17
	mA	1

Lateral auxiliary switches and signalling switch (side mounted)

Switching capacity for different voltages
$1 \mathrm{NO}+1 \mathrm{NC}, 2 \mathrm{NO}$ and signalling switch
Rated operational current $I_{\text {e }}$

At AC-15, alternating Voltage		
- 24 V	A	6
-230V	A	4
- 400V	A	3
-690V	A	1
- At AC-12 $=1 \mathrm{I}_{\text {th }}$, alternating Voltage		
- 24 V	A	10
-230V	A	10
-400V	A	10
-690V	A	10
- At DC, direct Voltage L/R 200 ms		
- 24 V	A	2
-110V	A	0.5
-220V	A	0.25
-440V	A	0.1
Minimum load capacity	V	17
	mA	1

Power consumption			
- During pick-up			
- AC voltages	VA/W	20.2 / 13	20.2 / 13
- DC voltages	W	20	13 ... 80
- During continuous duty			
- AC voltages	VA/W	7.2 / 2.4	--
- DC voltages	W	2.1	--
Response voltage			
- Tripping	V	$0.35 \ldots 0.7 \times \mathrm{U}$	--
- Pickup	V	$0.85 \ldots 1.1 \times \mathrm{U}$	$0.7 \ldots 1.1 \times \mathrm{U}_{5}$
Maximum opening time	ms		

Motor Protection Switches Series BES - Accessories

Short-circuit protection for auxiliary and control circuits

Melting fuses gl/gG	A	10	
Miniature circuit breaker, C characteristic	A	6	Prospective short-circuit current $<0.4 \mathrm{kA}$
Conductor cross-sections for auxiliary and control circuits			
Connection type		Screw terminals	
Terminal screw		Pozidriv size 2	
Prescribed tightening torque NmConductor cross-sections (1 or $\mathbf{2}$ conductors)			
- Solid	mm^{2}	$2 \times(0.5 \ldots 1.5)^{11} / 2 \times(0.75 \ldots 2.5)^{11}$	
- Finely stranded with end sleeve	mm^{2}	$2 \times(0.5 \ldots 1.5)^{11} / 2 \times(0.75 \ldots 2.5)^{11}$	
- Stranded	mm^{2}	$2 \times(0.5 \ldots 1.5)^{11} / 2 \times(0.75 \ldots 2.5)^{11}$	
AWG cables	AWG	$2 \times(18 \ldots 14)$	
		Cage Clamp terminals (on request)	
Conductor cross-sections (1 or 2 conductors connectable)			
- Solid	mm^{2}	$2 \times(0.25$... 2.5$)$	
- Finely stranded with end sleeve	mm^{2}	$2 \times(0.25$... 1.5)	
- Finely stranded without end sleeve	mm^{2}	$2 \times(0.25 \ldots 2.5)$	
- AWG cables, solid or stranded	AWG	$2 \times(24 . . .14)$	
Max. external diameter of the cable insulation	mm	3.6	

1) If two different conductor cross-sections are connected to one clamping point, both cross-sections must lie in the range specified. If identical cross-sections are used, this restriction does not apply.

Motor Protection Switches Series BES - Characteristic Curve

The time/current characteristic, the current limiting characteristics and the ${ }^{24}$ t characteristic curves were determined according to DIN VDE 0660 and IEC 60947.
The tripping characteristic applies to the time/current characteristic of DC and AC with a frequency of 0 Hz to 400 Hz
The characteristic curves apply to the cold state. At operating temperature, the tripping times of the thermal trip units are reduced to approximately 25%.
Under normal operating conditions, all three poles of the device must be loaded. To protect single-phase or DC loads, the current paths must be connected in series. The shown characteristic curve for the motor protection switch BES is a typical, individual curves for all ranges are available (on request).

Representation of Typical Time / Current Characteristic of BES

1) Opening time

2) Current
3) 2 -pole loading Class 10
4) 3 -pole loading Class 10

Solid State Contactor

Solid State Contactors for Analog Controlled Starting of Motors

Softstarter, 2-phase Controlled with Integrated Bypass

Solid State Reversing Contactor for Starting of 3-phase Motors

Torque Limiters

Softstarter, 3-phase Controlled

Solid State Contactors

Solid State Contactors Page 454
Motor Controllers Page 460
Torque Limiters Page 466
Soft Starters Page 468

Solid State Contactors and Motor Controllers

Solid State Contactor, Single Phase Controlled

Schrack-Info

- Solid state contactors products of Schrack are designed for applications, where silently and bouncefree switching is advantageous and long life span without EMC problems in service is claimed.
- The noninductive drive and the switching at zero-crossing of voltage are further features that prevents undefined switching status - which are caused by conventional, mechanical contactors. Solid state contactors applies to actuating drives, power units with frequently Stop/Start processes as well as to drives with frequently change of rotation direction

	LAS12301	LAS14301	LAS14302	LAS 14501
Main contacts				
Operational voltage	$\begin{gathered} \text { 12-240VAC } \\ 50 / 60 \mathrm{~Hz} \\ \hline \end{gathered}$	$24-480 \mathrm{VAC} 50 / 60 \mathrm{~Hz}$		
Operational current AC-1/51	30A	30A	30A	50A
Operational current AC-3	15A			
Operational current AC-55b	20A			
Operational current AC-56a	15A			
Control				
Control voltage	5-24VDC	5-24VDC	24-230VAC/DC	5-24VDC
min. response voltage	4.25 VDC	4.25 VDC	20.4VAC/DC	4.25 VDC
min. dropout voltage	1.5 VDC	1.5 VDC	7.2VAC/DC	1.5 VDC
Thermal and mechanical characteristic				
Power loss at PD max.	1.2W/A			
Power loss at periodic duty	1.2W/A \times operating cycle			
Cooling	natural convection			
Mounting	vertical +/-30			
Mounting distance - vertical mounting	$0 \mathrm{~mm} /$ horizontal min. 80 mm			
Mounting distance - horizontal mounting	max. 50\% operational currents at 0 mm (not recommended)			
Operating temperature range according to EN60947-4-3	-5 up to $40^{\circ} \mathrm{C}$			
Storage temperature range according to EN60947-4-3	-20 up to $80^{\circ} \mathrm{C}$			
max. operating temperature	$60^{\circ} \mathrm{C}$			
Derating	100% at $40^{\circ} \mathrm{C}, 80 \%$ at $50^{\circ} \mathrm{C}, 70 \%$ at $60^{\circ} \mathrm{C}$			
Width	45 mm	45 mm	45 mm	90 mm
Height	94 mm	94 mm	94 mm	94 mm
Depth	128.1 mm	128.1 mm	128.1 mm	124.3 mm
Protective equipment				
Short-circuit protection Installation - fuse	max. $50 \mathrm{Agl} / \mathrm{gG}$			
Short-circuit protection Installation and solid-state contactors - fuse	max. $1800 \mathrm{~A}^{2} \mathrm{~s}$			
Thermal overload protection	optional: LASUP62			

Dimensions
LAS12301, LAS14301,
LAS14302

Solid State Contactor, Single Phase Controlled

Wiring Connections (Module $45 / 90 \mathrm{~mm}$) Wiring type with or without cable/sleeves and other type of terminals *UL tested									
L1 T1 / L2 T2 / L3 T3 M4 Power terminals	$\begin{gathered} 1 \times 1.5-6 \\ \mathrm{~mm}^{2} \end{gathered}$	$\begin{gathered} 2 \times 1.5-6 \\ \mathrm{~mm}^{2} \end{gathered}$	$\begin{gathered} 1 \times 1.5-16 \\ \mathrm{~mm}^{2} \end{gathered}$	$\begin{gathered} 2 \times 1.5-6 \\ \mathrm{~mm}^{2} \end{gathered}$	$\begin{gathered} 1 \times 1-16 \\ \mathrm{~mm}^{2} \end{gathered}$	$\begin{gathered} 2 \times 1-6 \\ \mathrm{~mm}^{2} \end{gathered}$	N.A.	Pozidriv 2 1.2Nm Max.	6 mm 1.2 Nm Max.
L1 T1 / L2 T2 / L3 T3 M3 Power terminals	$\begin{gathered} 1 \times 0.75-4 \\ \mathrm{~mm}^{2} \end{gathered}$	$\begin{aligned} & \hline 2 \times 1 \\ & \mathrm{~mm}^{2} \end{aligned}$	$\begin{gathered} 1 \times 0.75-6 \\ \mathrm{~mm}^{2} \end{gathered}$	$\begin{gathered} 2 \times 0.75-2,5 \\ \mathrm{~mm}^{2} \end{gathered}$	$\begin{gathered} 1 \times 0.75-6 \\ \mathrm{~mm}^{2} \end{gathered}$	$\begin{gathered} 2 \times 0.75-1.5 \\ \mathrm{~mm}^{2} \end{gathered}$	N.A.	Pozidriv 1 0.5 Nm Max.	4 mm 0.5 Nm Max.
A1 A2 / 1112 Input terminals	$\begin{gathered} 1 \times 0.5-1.5 \\ \mathrm{~mm}^{2} \end{gathered}$	$\begin{gathered} 2 \times 0.5-0.75 \\ \mathrm{~mm}^{2} \end{gathered}$	$\begin{gathered} 1 \times 0.5-1.5 \\ \mathrm{~mm}^{2} \end{gathered}$	$\begin{gathered} 2 \times 0.5-1.5 \\ \mathrm{~mm}^{2} \end{gathered}$	$\begin{gathered} 1 \times 0.5-1.5 \\ \mathrm{~mm}^{2} \end{gathered}$	$\begin{gathered} 2 \times 0.5-1.5 \\ \mathrm{~mm}^{2} \end{gathered}$	N.A.	N.A.	3 mm 0.5 Nm Max.

Important: When using electric or pneumatic tools for screw terminals observe the maximum torque limits
Circuit Diagram

- Rated operational current up to 63 A AC-1

1) for LASUP62 (see "Accessories for Solid State Contactors and Controllers")
2) Control voltage A1-A2

DESCRIPTION	AVAILABLE
$\mathbf{3 0 A}$	ORDER NO.
$30 \mathrm{~A} / 12-230 \mathrm{VAC}$, control voltage 5-24VDC	
$30 \mathrm{~A} / 24-480 \mathrm{VAC}$, control voltage 5-24VDC	LAS 12301
$30 \mathrm{~A} / 24-480 \mathrm{VAC}$, control voltage 24-230VAC/DC	LAS14301
50 A	
$50 \mathrm{~A} / 24-480 \mathrm{VAC}$, control voltage 5-24VDC	LAS14302

Solid State Contactors and Motor Controllers

Solid State Contactors, 2-phase Controlled

Schrack-Info

- Solid state contactors products of Schrack are designed for applications, where silently and bouncefree switching is advantageous and long life span without EMC problems in service is claimed
- The noninductive drive and the switching at zero-crossing of voltage are further features that prevents undefined switching status - which are caused by conventional, mechanical contactors. Solid state contactors applies to actuating drives, power units with frequently Stop/Start processes as well as to drives with frequently change of rotation direction

	LAS22302	LAS24301	LAS24501	LAS24502
Main contacts				
Operational voltage	12-240VAC $50 / 60 \mathrm{~Hz}$	24-480VAC $50 / 60 \mathrm{~Hz}$		
Operational current AC-1/51	30 A ($2 \times 15 \mathrm{~A}$)		50A ($2 \times 25 \mathrm{~A}$)	
Operational current AC-3	15A (2x7.5A)			
Operational current AC-55b	$20 \mathrm{~A}(2 \times 10 \mathrm{~A})$			
Operational current AC-56a	$7 \mathrm{~A}(2 \times 3.5 \mathrm{~A})$			
Control				
Control voltage	24-230VAC/DC	5-24VDC	5-24VDC	24-230VAC/DC
min. response voltage	20.4VAC/DC	4,25VDC	4,25VDC	20.4VAC/DC
min. dropout voltage	7.2VAC/DC	1.5 VDC	1.5 VDC	7.2VAC/DC
Thermal and mechanical characteristic				
Power loss at PD max.	$2.2 \mathrm{~W} / \mathrm{A}$			
Power loss at periodic duty	2.2W/A x operating cycle			
Cooling	natural convection			
Mounting	vertical +/-30			
Mounting distance - vertical mounting	$0 \mathrm{~mm} /$ horizontal min. 80 mm			
Mounting distance - horizontal mounting	max. 50\% operational current at 0 mm (not recommended)			
Operating temperature range according to EN60947-4-3	-5 up to $40^{\circ} \mathrm{C}$			
Storage temperature range according to EN60947-4-3	-20 up to $80^{\circ} \mathrm{C}$			
max. operating temperature	$60^{\circ} \mathrm{C}$			
Derating	100% at $40^{\circ} \mathrm{C}, 80 \%$ at $50^{\circ} \mathrm{C}, 70 \%$ at $60^{\circ} \mathrm{C}$			
Width	45 mm	45 mm	90 mm	90 mm
Height	94 mm	94 mm	94 mm	94 mm
Depth	128.1 mm	128.1 mm	124.3 mm	124.3 mm
Protective gear				
Short-circuit protection installation - fuse	max. $50 \mathrm{~A} \mathrm{gl} / \mathrm{gG}$			
Short-circuit protection Installation and solid-state contactors - fuse	max. 1800A ${ }^{2}$ s			
Thermal overload protection	optional: LASUP62			

Dimensions

LAS22302, LAS24301

Solid State Contactors, 2-phase Controlled

Wiring Connections (Module $45 / 90 \mathrm{~mm}$) Wiring type with or without cable/sleeves and other type of terminals *UL tested									
L1 T1 / L2 T2 / L3 T3 M4 Power terminals	$\begin{gathered} 1 \times 1.5-6 \\ \mathrm{~mm}^{2} \end{gathered}$	$\begin{gathered} 2 \times 1.5-6 \\ \mathrm{~mm}^{2} \end{gathered}$	$\begin{gathered} 1 \times 1.5-16 \\ \mathrm{~mm}^{2} \end{gathered}$	$\begin{gathered} 2 \times 1.5-6 \\ \mathrm{~mm}^{2} \end{gathered}$	$\begin{gathered} 1 \times 1-16 \\ \mathrm{~mm}^{2} \end{gathered}$	$\begin{gathered} 2 \times 1-6 \\ \mathrm{~mm}^{2} \end{gathered}$	N.A.	Pozidriv 2 1.2Nm Max.	6 mm 1.2 Nm Max.
L1 T1 / L2 T2 / L3 T3 M3 Power terminals	$\begin{gathered} 1 \times 0.75-4 \\ \mathrm{~mm}^{2} \end{gathered}$	$\begin{aligned} & \hline 2 \times 1 \\ & \mathrm{~mm}^{2} \end{aligned}$	$\begin{gathered} 1 \times 0.75-6 \\ \mathrm{~mm}^{2} \end{gathered}$	$\begin{gathered} 2 \times 0.75-2,5 \\ \mathrm{~mm}^{2} \end{gathered}$	$\begin{gathered} 1 \times 0.75-6 \\ \mathrm{~mm}^{2} \end{gathered}$	$\begin{gathered} 2 \times 0.75-1.5 \\ \mathrm{~mm}^{2} \end{gathered}$	N.A.	Pozidriv 1 0.5 Nm Max.	4 mm 0.5 Nm Max.
A1 A2 / 1112 Input terminals	$\begin{gathered} 1 \times 0.5-1.5 \\ \mathrm{~mm}^{2} \end{gathered}$	$\begin{gathered} 2 \times 0.5-0.75 \\ \mathrm{~mm}^{2} \end{gathered}$	$\begin{gathered} 1 \times 0.5-1.5 \\ \mathrm{~mm}^{2} \end{gathered}$	$\begin{gathered} 2 \times 0.5-1.5 \\ \mathrm{~mm}^{2} \end{gathered}$	$\begin{gathered} 1 \times 0.5-1.5 \\ \mathrm{~mm}^{2} \end{gathered}$	$\begin{gathered} 2 \times 0.5-1.5 \\ \mathrm{~mm}^{2} \end{gathered}$	N.A.	N.A.	3 mm 0.5 Nm Max.

Important: When using electric or pneumatic tools for screw terminals observe the maximum torque limits
Circuit Diagram

Rated operational current up to $50 \mathrm{~A} A \mathrm{~A}-1 / 2 \times 15 \mathrm{~A} A C-3$
Two independent single-pole contactors in one housing

1) for LASUP62 (see "Accessories for Solid State Contactors and Controllers")
2) Control voltage A1-A2
3) Control voltage A3-A4

DESCRIPTION	AVAILABLE
$\mathbf{3 0 A}$	ORDER NO.
2 -pole, $2 \times 15 \mathrm{~A} / 1 \times 30 \mathrm{~A} / 12-230 \mathrm{VAC}$, control voltage $24-230 \mathrm{VAC} / \mathrm{DC}$	
2 -pole, $2 \times 15 \mathrm{~A} / 1 \times 30 \mathrm{~A} / 24-480 \mathrm{VAC}$, control voltage $5-24 \mathrm{VDC}$	LAS22302
$\mathbf{5 0 A}$	LAS24301
2 -pole, $2 \times 25 \mathrm{~A} / 1 \times 50 \mathrm{~A} / 24-480 \mathrm{VAC}$, control voltage $5-24 \mathrm{VDC}$	
2 -pole, $2 \times 25 \mathrm{~A} / 1 \times 50 \mathrm{~A} / 24-480 \mathrm{VAC}$, control voltage $24-230 \mathrm{VAC} / \mathrm{DC}$	LAS24501

Solid State Contactors and Motor Controllers

Solid State Contactors, 3-phase Controlled

Schrack-Info

- Solid state contactors products of Schrack are designed for applications, where silently and bounce-free switching is advantageous and long life span without EMC problems in service is claimed
- The noninductive drive and the switching at zero-crossing of voltage are further features that prevents undefined switching status - oftentimes caused by conventional, mechanical contactors. Solid state contactors applies to actuating drives, power units with frequently Stop/Start processes as well as to drives with frequently change of rotation direction

	LAS32202	LAS34102	LAS34201	LAS34202	LAS36201	LAS36202
Main contacts						
Operational voltage	$\begin{gathered} \hline 12-240 \mathrm{VAC} \\ 50 / 60 \mathrm{~Hz} \\ \hline \end{gathered}$	$24-480 \mathrm{VAC} 50 / 60 \mathrm{~Hz}$			$48-600 \mathrm{VAC} 50 / 60 \mathrm{~Hz}$	
Operational current AC-1/51	20A	10A	20A	20A	20A	20A
Control						
Control voltage	24-230VAC/DC		5-24VDC	24-230VAC/DC	5-24VDC	24-230VAC/DC
min . response voltage	20.4VAC/DC		4.25 VDC	20.4VAC/DC	4.25 VDC	$20.4 \mathrm{VAC} / \mathrm{DC}$
min . dropout voltage	7.2VAC/DC		1.5 VDC	7.2VAC/DC	1.5 VDC	7.2VAC/DC
Thermal and mechanical characteristic						
Power loss at PD max.	3.3W/A					
Power loss at periodic duty	3.3W/A \times operating cycle					
Cooling	natural convection					
Mounting	vertical +/-30					
Mounting distance - vertical mounting	$0 \mathrm{~mm} /$ horizontal min. 80 mm					
Mounting distance - horizontal mounting	max. 50% operational currents at 0 mm (not recommended)					
Operating temperature range according to EN60947-4-3	-5 up to $40^{\circ} \mathrm{C}$					
Storage temperature range according to EN60947-4-3	-20 up to $80^{\circ} \mathrm{C}$					
max. operating temperature	$60^{\circ} \mathrm{C}$					
Derating	100% at $40^{\circ} \mathrm{C}, 80 \%$ at $50^{\circ} \mathrm{C}, 70 \%$ at $60^{\circ} \mathrm{C}$					
Width	90 mm	45 mm	90 mm	90 mm	90 mm	90 mm
Height	94 mm					
Depth	124.3 mm	128.1 mm	124.3 mm	124.3 mm	124.3 mm	124.3 mm
Protective gear						
Short-circuit protection Installation - fuse	max. $50 \mathrm{Agl} / \mathrm{gG}$					
Short-circuit protection Installation and solid-state contactors - fuse	max. $450 \mathrm{~A}^{2}$ s					
Thermal overload protection	optional: LASUP62					

Dimensions

Solid State Contactors, 3-phase Controlled

Wiring Connections (Module $45 / 90 \mathrm{~mm}$) Wiring type with or without cable/sleeves and other type of terminals *UL tested									
L1 T1 / L2 T2 / L3 T3 M4 Power terminals	$\begin{gathered} 1 \times 1.5-6 \\ \mathrm{~mm}^{2} \end{gathered}$	$\begin{gathered} 2 \times 1.5-6 \\ \mathrm{~mm}^{2} \end{gathered}$	$\begin{gathered} 1 \times 1.5-16 \\ \mathrm{~mm}^{2} \end{gathered}$	$\begin{gathered} 2 \times 1.5-6 \\ \mathrm{~mm}^{2} \end{gathered}$	$\begin{gathered} 1 \times 1-16 \\ \mathrm{~mm}^{2} \end{gathered}$	$\begin{gathered} 2 \times 1-6 \\ \mathrm{~mm}^{2} \end{gathered}$	N.A.	Pozidriv 2 1.2Nm Max.	6 mm 1.2Nm Max.
L1 T1 / L2 T2 / L3 T3 M3 Power terminals	$\begin{gathered} 1 \times 0.75-4 \\ \mathrm{~mm}^{2} \end{gathered}$	$\begin{aligned} & \hline 2 \times 1 \\ & \mathrm{~mm}^{2} \end{aligned}$	$\begin{gathered} 1 \times 0.75-6 \\ \mathrm{~mm}^{2} \end{gathered}$	$\begin{gathered} 2 \times 0.75-2,5 \\ \mathrm{~mm}^{2} \end{gathered}$	$\begin{gathered} 1 \times 0.75-6 \\ \mathrm{~mm}^{2} \end{gathered}$	$\begin{gathered} 2 \times 0.75-1.5 \\ \mathrm{~mm}^{2} \end{gathered}$	N.A.	Pozidriv 1 0.5 Nm Max.	4 mm 0.5 Nm Max.
A1 A2 / 1112 Input terminals	$\begin{gathered} 1 \times 0.5-1.5 \\ \mathrm{~mm}^{2} \end{gathered}$	$\begin{gathered} 2 \times 0.5-0.75 \\ \mathrm{~mm}^{2} \end{gathered}$	$\begin{gathered} 1 \times 0.5-1.5 \\ \mathrm{~mm}^{2} \end{gathered}$	$\begin{gathered} 2 \times 0.5-1.5 \\ \mathrm{~mm}^{2} \end{gathered}$	$\begin{gathered} 1 \times 0.5-1.5 \\ \mathrm{~mm}^{2} \end{gathered}$	$\begin{gathered} 2 \times 0.5-1.5 \\ \mathrm{~mm}^{2} \end{gathered}$	N.A.	N.A.	3 mm 0.5 Nm Max.

Important: When using electric or pneumatic tools for screw terminals observe the maximum torque limits

Circuit Diagram

Rated operational current up to $3 \times 20 \mathrm{~A} A C-1 / 10 \mathrm{~A} \mathrm{AC}-3$

1) for LASUP62 (see "Accessories for Solid State Contactors and Controllers")
2) Control voltage A1-A2

DESCRIPTION	AVAILABLE
$\mathbf{1 0 A}$	ORDER NO.
$10 \mathrm{~A} / 24-480 \mathrm{VAC}$, control voltage 24-230VAC/DC	
20A	LAS34102
20A/12-230VAC, control voltage 24-230VAC/DC	LAS32202
20A/24-480VAC, control voltage 5-24VDC	LAS36201
20A/24-480VAC, control voltage 24-230VAC/DC	
20A/48-600VAC, control voltage 5-24VDC	LAS36202
20A/48-600VAC, control voltage 24-230VAC/DC	

Solid State Contactors and Motor Controllers

Solid State Contactors for Direct Starting of 3-phase Motors

Schrack-Info

- Solid state contactor for direct starting of 3-phase motors fulfills the standard of EN60947-4-2 and has a required space of only 45 mm . A control voltage range of $24-60 \mathrm{VDC}$ or $24-480 \mathrm{VAC}$ and the operational current up to $15 \mathrm{~A}\left(\mathrm{AC}-3\right.$, at $40^{\circ} \mathrm{C}$) provides a wide range of applications within the realms of "silently switching"

	LAM34154
Main contacts	
Operational voltage	400-480VAC 50/60Hz
Operational current AC-53/AC-4	15A AC-3
Control	
Control voltage	24-60VDC / 24-480VAC
min. response voltage	20.4VAC/DC
min. dropout voltage	5VAC/DC
Thermal and mechanical characteristic	
Power loss at PD max.	2.2W/A
Power loss at periodic duty	2.2W/A x operating cycle
Cooling	natural convection
Mounting	vertical +/-30 ${ }^{\circ}$
Mounting distance - vertical mounting	$0 \mathrm{~mm} /$ horizontal min. 80 mm
Mounting distance - horizontal mounting	max. 50\% operational currents at 0 mm (not recommended)
Operating temperature range according to EN60947-4-3	-5 up to $40^{\circ} \mathrm{C}$
Storage temperature range according to EN60947-4-3	-20 up to $80^{\circ} \mathrm{C}$
max. operating temperature	$60^{\circ} \mathrm{C}$
Derating	100\% at $40^{\circ} \mathrm{C}, 80 \%$ at $50^{\circ} \mathrm{C}, 70 \%$ at $60^{\circ} \mathrm{C}$
Width	45 mm
Height	94 mm
Depth	128.1 mm
Protective gear	
Short-circuit protection Installation - fuse	max. $50 \mathrm{~A} \mathrm{gL/gG}$
Short-circuit protection Installation and solid-state contactor - fuse	max. 1800A ${ }^{2}$ s
Thermal overload protection	optional: LASUP62

Dimensions

Solid State Contactors for Direct Starting of 3-phase Motors

Wiring Connections (Module $45 / 90 \mathrm{~mm}$) Wiring type with or without cable/sleeves and other type of terminals * UL tested									
L1 T1 / L2 T2 / L3 T3 M4 Power terminals	$\begin{gathered} 1 \times 1.5-6 \\ \mathrm{~mm}^{2} \\ \hline \end{gathered}$	$\begin{gathered} 2 \times 1.5-6 \\ \mathrm{~mm}^{2} \end{gathered}$	$\begin{gathered} 1 \times 1.5-16 \\ \mathrm{~mm}^{2} \end{gathered}$	$\begin{gathered} 2 \times 1.5-6 \\ \mathrm{~mm}^{2} \end{gathered}$	$\begin{gathered} 1 \times 1-16 \\ \mathrm{~mm}^{2} \end{gathered}$	$\begin{gathered} 2 \times 1-6 \\ \mathrm{~mm}^{2} \end{gathered}$	N.A.	$\begin{gathered} \hline \text { Pozidriv } 2 \\ \text { 1.2Nm Max. } \end{gathered}$	6 mm 1.2 Nm Max.
L1 T1 / L2 T2 / L3 T3 M3 Power terminals	$\begin{gathered} 1 \times 0.75-4 \\ \mathrm{~mm}^{2} \end{gathered}$	$\begin{gathered} 2 \times 1 \\ \mathrm{~mm}^{2} \end{gathered}$	$\begin{gathered} 1 \times 0.75-6 \\ \mathrm{~mm}^{2} \end{gathered}$	$\begin{gathered} 2 \times 0.75-2,5 \\ \mathrm{~mm}^{2} \end{gathered}$	$1 \times 0.75-6$	$\begin{gathered} 2 \times 0.75-1.5 \\ \mathrm{~mm}^{2} \end{gathered}$	N.A.	Pozidriv 1 0.5 Nm Max.	4 mm 0.5 Nm Max.
A1 A2 / 1112 Input terminals	$\begin{gathered} 1 \times 0.5-1.5 \\ \mathrm{~mm}^{2} \end{gathered}$	$\begin{gathered} 2 \times 0.5-0.75 \\ \mathrm{~mm}^{2} \end{gathered}$	$\begin{gathered} 1 \times 0.5-1.5 \\ \mathrm{~mm}^{2} \end{gathered}$	$\begin{gathered} 2 \times 0.5-1.5 \\ \mathrm{~mm}^{2} \end{gathered}$	$\begin{gathered} 1 \times 0.5-1.5 \\ \mathrm{~mm}^{2} \end{gathered}$	$\begin{gathered} 2 \times 0.5-1.5 \\ \mathrm{~mm}^{2} \end{gathered}$	N.A.	N.A.	3 mm 0.5 Nm Max.

Important: When using electric or pneumatic tools for screw terminals observe the maximum torque limits

- Circuit Diagram

1) for LASUP62 (see "Accessories for Solid State Contactors and Controllers")
2) Control voltage A1-A2

DESCRIPTION	AVAILABLE
3-pole, 15A/380-480VAC	$-\infty=0-1000$

Solid State Contactors and Motor Controllers

Solid State Reversing Contactor for Starting of 3-phase Motors

Schrack-Info

- Long life span, compact design and unlimited number of cycles per hour characterise these semiconductor based Reversing contactors. The devices apply especially to control of cranes and to conveyor- or packaging machines

	LAW34102
Main contacts	
Operational voltage	400-480VAC 50/60Hz
Operational current AC-53, AC-4	10A AC-53/AC-3 / 8A AC-4
Control	
Control voltage	24-230VAC/DC
min . response voltage	20.4VAC/DC
min. dropout voltage	7.2VAC/DC
Thermal and mechanical characteristic	
Power loss at PD max.	2.2W/A
Power loss at periodic duty	2.2W/A x operating cycle
Cooling	natural convection
Mounting	vertical +/-30
Mounting distance - vertical mounting	$0 \mathrm{~mm} /$ horizontal min. 80 mm
Mounting distance - horizontal mounting	max. 50\% Operational currents at 0 mm (not recommended)
Operating temperature range according to EN60947-4-3	-5 up to $40^{\circ} \mathrm{C}$
Storage temperature range according to EN60947-4-3	-20 up to $80^{\circ} \mathrm{C}$
max. operating temperature	$60^{\circ} \mathrm{C}$
Derating	100\% at $40^{\circ} \mathrm{C}, 80 \%$ at $50^{\circ} \mathrm{C}, 70 \%$ at $60^{\circ} \mathrm{C}$
Width	45 mm
Height	94 mm
Depth	128.1 mm
Protective gear	
Short-circuit protection Installation - fuse	max. $50 \mathrm{~A} \mathrm{gL/gG}$
Short-circuit protection Installation and solid-state contactor - fuse	max. $450 \mathrm{~A}^{2} \mathrm{~s}$
Thermal overload protection	optional: LASUP62

Dimensions
LAW34102

Solid State Reversing Contactor for Starting of 3-phase Motors

Wiring Connections (Module $45 / 90 \mathrm{~mm}$) Wiring type with or without cable/sleeves and other type of terminals * UL tested									
L1 T1 / L2 T2 / L3 T3 M4 Power terminals	$\begin{gathered} 1 \times 1.5-6 \\ \mathrm{~mm}^{2} \end{gathered}$	$\begin{gathered} 2 \times 1.5-6 \\ \mathrm{~mm}^{2} \end{gathered}$	$\begin{gathered} 1 \times 1.5-16 \\ \mathrm{~mm}^{2} \end{gathered}$	$\begin{gathered} 2 \times 1.5-6 \\ \mathrm{~mm}^{2} \end{gathered}$	$\begin{gathered} 1 \times 1-16 \\ \mathrm{~mm}^{2} \\ \hline \end{gathered}$	$\begin{gathered} 2 \times 1-6 \\ \mathrm{~mm}^{2} \\ \hline \end{gathered}$	N.A.	$\begin{gathered} \text { Pozidriv } 2 \\ \text { 1.2 Nm Max. } \end{gathered}$	6 mm 1.2Nm Max.
L1 T1 / L2 T2 / L3 T3 M3 Power terminals	$\begin{gathered} 1 \times 0.75-4 \\ \mathrm{~mm}^{2} \end{gathered}$	$\begin{aligned} & \hline 2 \times 1 \\ & \mathrm{~mm}^{2} \end{aligned}$	$\begin{gathered} 1 \times 0.75-6 \\ \mathrm{~mm}^{2} \end{gathered}$	$\begin{gathered} 2 \times 0.75-2,5 \\ \mathrm{~mm}^{2} \end{gathered}$	$\begin{gathered} 1 \times 0.75-6 \\ \mathrm{~mm}^{2} \end{gathered}$	$\begin{gathered} 2 \times 0.75-1.5 \\ \mathrm{~mm}^{2} \end{gathered}$	N.A.	$\begin{gathered} \text { Pozidriv } 1 \\ 0.5 \mathrm{Nm} \text { Max. } \end{gathered}$	4 mm 0.5 Nm Max.
A1 A2 / 1112 Input terminals	$\begin{gathered} 1 \times 0.5-1.5 \\ \mathrm{~mm}^{2} \end{gathered}$	$\begin{gathered} 2 \times 0.5-0.75 \\ \mathrm{~mm}^{2} \end{gathered}$	$\begin{gathered} 1 \times 0.5-1.5 \\ \mathrm{~mm}^{2} \end{gathered}$	$\begin{gathered} 2 \times 0.5-1.5 \\ \mathrm{~mm}^{2} \end{gathered}$	$\begin{gathered} 1 \times 0.5-1.5 \\ \mathrm{~mm}^{2} \end{gathered}$	$\begin{gathered} 2 \times 0.5-1.5 \\ \mathrm{~mm}^{2} \end{gathered}$	N.A.	N.A.	3 mm 0.5 Nm Max.

Important: When using electric or pneumatic tools for screw terminals observe the maximum torque limits
Circuit Diagram

1) for LASUP62 (see "Accessories for Solid State Contactors and Controllers")
2) Control voltage, rotation clockwise
3) Control voltage, rotation anticlockwise

DESCRIPTION	AVAILABLE
3-pole, $10 \mathrm{~A} / 24-480 \mathrm{VAC} /$ DC	ORDER NO.

Solid State Contactors and Motor Controllers

Solid State Contactors for Analog Controlled Starting of Motors

Schrack-Info

- Der Solid state analog controllers have been designed for analog control of heating elements, infrared lamp radiators applications at the packaging industry.
- The high accuracy at the control of process temperatures is performed by phase angle or shock impuls. Universal control signals are: current loop ... $0-20 \mathrm{~mA}$ or $4-20 \mathrm{~mA}$ Control voltage ... $0-10 \mathrm{VDC}$ or potentiometer control 10 kOhm .

	LAA14306
Main contacts	
Operational voltage	380-480VAC
Operational current AC-1/51	30A
Operational current AC-55b	30A
Operational current AC-56a	30A
Analogue control signals	
Current loop control (voltage drop max. 3V)	0-20mA / 20-0mA
Input resistance (impedance min. 300kOhm)	0-10VDC / 10-0VDC
Manual control with potentiometer	$0-10 \mathrm{kOhm} / 10-0 \mathrm{kOhm}$
External operating voltage / power supply	24VAC/24DC max. 30mA
Thermal and mechanical characteristic	
Power loss at PD max.	1.2W/A
Power loss at periodic duty	1,2W/A \times operating cycle
Cooling	natural convection
Mounting	vertical +/-30
Mounting distance - vertical mounting	$0 \mathrm{~mm} / \mathrm{horizontal}$ min. 80 mm
Mounting distance - horizontal mounting	max. 50% operational currents at 0 mm (not recommended)
Operating temperature range according to EN60947-4-3	-5 up to $40^{\circ} \mathrm{C}$
Storage temperature range according to EN60947-4-3	-20 up to $80^{\circ} \mathrm{C}$
max. operating temperature	$60^{\circ} \mathrm{C}$
Derating	100% at $40^{\circ} \mathrm{C}, 80 \%$ at $50^{\circ} \mathrm{C}, 70 \%$ at $60^{\circ} \mathrm{C}$
Width	45 mm
Height	94 mm
Depth	128.1 mm
Protective gear	
Short-circuit protection Installation - fuse	max. $50 \mathrm{~A} \mathrm{gl/gG}$
Short-circuit protection Installation and solid-state contactor - fuse	max. 1800A ${ }^{2}$ s
Thermal overload protection	optional: LASUP62

Dimensions

Solid State Contactors for Analog Controlled Starting of Motors

Wiring Connections (Module $45 / 90 \mathrm{~mm}$) Wiring type with or without cable/sleeves and other type of terminals * UL tested									
L1 T1 / L2 T2 / L3 T3 M4 Power terminals	$\begin{gathered} 1 \times 1.5-6 \\ \mathrm{~mm}^{2} \end{gathered}$	$\begin{gathered} 2 \times 1.5-6 \\ \mathrm{~mm}^{2} \end{gathered}$	$\begin{gathered} 1 \times 1.5-16 \\ \mathrm{~mm}^{2} \end{gathered}$	$\begin{gathered} 2 \times 1.5-6 \\ \mathrm{~mm}^{2} \\ \hline \end{gathered}$	$\begin{gathered} 1 \times 1-16 \\ \mathrm{~mm}^{2} \end{gathered}$	$\begin{gathered} 2 \times 1-6 \\ \mathrm{~mm}^{2} \end{gathered}$	N.A.	Pozidriv 2 1.2Nm Max.	6 mm 1.2 Nm Max.
L1 T1 / L2 T2 / L3 T3 M3 Power terminals	$\begin{gathered} 1 \times 0.75-4 \\ \mathrm{~mm}^{2} \\ \hline \end{gathered}$	$\begin{aligned} & \hline 2 \times 1 \\ & \mathrm{~mm}^{2} \\ & \hline \end{aligned}$	$\begin{gathered} 1 \times 0.75-6 \\ \mathrm{~mm}^{2} \end{gathered}$	$\begin{gathered} 2 \times 0.75-2,5 \\ \mathrm{~mm}^{2} \end{gathered}$	$\begin{gathered} 1 \times 0.75-6 \\ \mathrm{~mm}^{2} \end{gathered}$	$\begin{gathered} 2 \times 0.75-1.5 \\ \mathrm{~mm}^{2} \end{gathered}$	N.A.	$\begin{gathered} \text { Pozidriv } 1 \\ 0.5 \mathrm{Nm} \text { Max. } \end{gathered}$	4 mm 0.5 Nm Max.
A1 A2 / 1112 Input terminals	$\begin{gathered} 1 \times 0.5-1.5 \\ \mathrm{~mm}^{2} \end{gathered}$	$\begin{gathered} 2 \times 0.5-0.75 \\ \mathrm{~mm}^{2} \end{gathered}$	$\begin{gathered} 1 \times 0.5-1.5 \\ \mathrm{~mm}^{2} \end{gathered}$	$\begin{gathered} 2 \times 0.5-1.5 \\ \mathrm{~mm}^{2} \end{gathered}$	$\begin{gathered} 1 \times 0.5-1.5 \\ \mathrm{~mm}^{2} \end{gathered}$	$\begin{gathered} 2 \times 0.5-1.5 \\ \mathrm{~mm}^{2} \end{gathered}$	N.A.	N.A.	3 mm 0.5 Nm Max.

Important: When using electric or pneumatic tools for screw terminals observe the maximum torque limits

Circuit Diagram

1) for LASUP62 (see "Accessories for Solid State Contactors and Controllers")
2) External power supply 24 VAC or 24 VDC , max 30 mA

DESCRIPTION	AVAILABLE
$30 A$	ORDER NO.

Accessories for Solid State Contactors and Controllers

Schrack-Info

- For all Solid state contactor, Motor controllers, Reversing contactors and Analog controllers a Thermal overload relais is recommended. The optional thermal protection unit has to be snapped directly into the allocated space of device and wired to its accoding terminals. At overheating of Solid state contactor, the thermal protection unit disconnects the supply. Reset can be done manually or automatically according cooling down status of drive.

DESCRIPTION	AVAILABLE	ORDER NO.
Thermal overload protection / thermostat	$-\infty=0$	

Torque Limiters and Soft Starters

Torque Limiters

Schrack-Info

- Torque limiter reduces by adjusting the starting torque the mechanical strain of drive is essentially reduced. Same design of devices for 1 - and 3-phase motors with adjustable running up time of 0.5 up to 5 seconds. Also the torque at starting is adjustable.

Dimensions

Torque Limiters

Wiring Connections (Module $45 / 90 \mathrm{~mm}$) Wiring type with or without cable/sleeves and other type of terminals *UL tested									
L1 T1 / L2 T2 / L3 T3 M4 Power terminals	$\begin{gathered} 1 \times 1.5-6 \\ \mathrm{~mm}^{2} \end{gathered}$	$\begin{gathered} 2 \times 1.5-6 \\ \mathrm{~mm}^{2} \\ \hline \end{gathered}$	$\begin{gathered} 1 \times 1.5-16 \\ \mathrm{~mm}^{2} \end{gathered}$	$\begin{gathered} 2 \times 1.5-6 \\ \mathrm{~mm}^{2} \\ \hline \end{gathered}$	$\begin{gathered} 1 \times 1-16 \\ \mathrm{~mm}^{2} \end{gathered}$	$\begin{gathered} 2 \times 1-6 \\ \mathrm{~mm}^{2} \end{gathered}$	N.A.	$\begin{gathered} \hline \text { Pozidriv } 2 \\ \text { 1.2Nm Max. } \end{gathered}$	6 mm 1.2 Nm Max.
L1 T1 / L2 T2 / L3 T3 M3 Power terminals	$\begin{gathered} 1 \times 0.75-4 \\ \mathrm{~mm}^{2} \end{gathered}$	$\begin{aligned} & \hline 2 \times 1 \\ & \mathrm{~mm}^{2} \end{aligned}$	$\begin{gathered} 1 \times 0.75-6 \\ \mathrm{~mm}^{2} \end{gathered}$	$\begin{gathered} 2 \times 0.75-2,5 \\ \mathrm{~mm}^{2} \end{gathered}$	$\begin{gathered} 1 \times 0.75-6 \\ \mathrm{~mm}^{2} \end{gathered}$	$\begin{gathered} 2 \times 0.75-1.5 \\ \mathrm{~mm}^{2} \end{gathered}$	N.A.	Pozidriv 1 0.5 Nm Max.	4 mm 0.5 Nm Max.
A1 A2 / 1112 Input terminals	$\begin{gathered} 1 \times 0.5-1.5 \\ \mathrm{~mm}^{2} \end{gathered}$	$\begin{gathered} 2 \times 0.5-0.75 \\ \mathrm{~mm}^{2} \end{gathered}$	$\begin{gathered} 1 \times 0.5-1.5 \\ \mathrm{~mm}^{2} \end{gathered}$	$\begin{gathered} 2 \times 0.5-1.5 \\ \mathrm{~mm}^{2} \end{gathered}$	$\begin{gathered} 1 \times 0.5-1.5 \\ \mathrm{~mm}^{2} \end{gathered}$	$\begin{gathered} 2 \times 0.5-1.5 \\ \mathrm{~mm}^{2} \end{gathered}$	N.A.	N.A.	$\begin{gathered} 3 \mathrm{~mm} \\ 0.5 \mathrm{Nm} \text { Max. } \end{gathered}$

Important: When using electric or pneumatic tools for screw terminals observe the maximum torque limits

Circuit Diagram

1) for LASUP62 (see "Accessories for Torque Limiters and Soft Starters")

DESCRIPTION	AVAILABLE	ORDER NO.
$15 A / 230-480 V A C$	$-\infty$	LAD34150
$25 A / 230-480 V A C$	LAD34250	$-\infty=0$

Torque Limiters and Soft Starters

Softstarter, 2-phase Controlled

Schrack-Info

- The reduction of mechanical strikes at starting and vibations during operation are only two aspects for the application of semiconductor based Soffstarters. Not necessary replacement of Y-D assemblies, variable ratio transformers or series resistors and therefore increased flexibility makes Softstarters to an efficient solution. A wide range of products for variable power with rated currents up to 200A is available.
- Scopes of application are compressors, conveyors, water pumps and fans

	LAK32155	LAK34155	LAK34255
Main contacts			
Operational voltage	208-240VAC 50/60Hz	$400-480$ VAC $50 / 60 \mathrm{~Hz}$	
Operational current AC-53a (without bypass)	15A	15A	25A
Operational current AC-53b (with bypass)	-	-	-
Connection	3-conductor		
Class index AC-53a (without bypass)	X-Tx: 8-3: 100-3000		
	8 x rated current for max. 3s		
	100\% duty cycle, 3000 Switching cycles / h		
Load class	10 or 10A		
Leakage current	max. 5 mA		
Load current	min .50 mA		
Start time setting range	0.5-10s		
Stop time setting range	0.5-10s		
Torque adjustment	0-85\% of the nominal torque Kick-Start (200ms)		
Thermal overload relay	extern		
Control			
Control voltage	24-230VAC/DC	24-480VAC/DC	
Active control range	-		
Inactive control range	-		
max. response voltage	20.4VAC/DC		
min. dropout voltage	5VAC/DC		
max. current for no operation	1 mA		
max. response time	70 ms		
max. current / power	$15 \mathrm{~mA} / 2 \mathrm{VA}$		
Thermal and mechanical characteristic			
Power loss at PD max., without bypass	2W/A without Bypass		
Power loss at bridged contactor	max. 4W		
Cooling	natural convection		
Mounting	vertical +/-30		
Mounting distance - vertical mounting	$0 \mathrm{~mm} /$ horizontal min. 80 mm		
Mounting distance - horizontal mounting	max. 50% operational currents at 0 mm (not recommended)		
Operating temperature range according to EN60947-4-3	-5 up to $40^{\circ} \mathrm{C}$		
Storage temperature range according to EN60947-4-3	-20 up to $80^{\circ} \mathrm{C}$		
max. operating temperature	$60^{\circ} \mathrm{C}$		
Derating	100% at $40^{\circ} \mathrm{C}, 80 \%$ at $50^{\circ} \mathrm{C}, 70 \%$ at $60^{\circ} \mathrm{C}$		
Rated insulation voltage U_{i}	660 V		
Impulse withstand voltage $\mathrm{U}_{\text {imp }}$	4 kV		
Installation category	III		
Degree of protection	IP20		
Degree of pollution	3		
Width	45 mm	45 mm	90 mm
Height	94 mm	94 mm	94 mm
Depth	128.1 mm	128.1 mm	128.1 mm
Weight	690 g	690 g	1150 g
Material	enclosure: PPO UL94V1; heat sink: aluminium; base plate: galvanized steel		
Protective equipment			
Short-circuit protection installation - fuse	$50 \mathrm{AgL} / \mathrm{gG}$	$50 \mathrm{AgL} / \mathrm{gG}$	80A gl/gG
Short-circuit protection installation and solid-state contactor - fuse	$1800 \mathrm{~A}^{2} \mathrm{~s}$	$1800 \mathrm{~A}^{2} \mathrm{~s}$	$6300 \mathrm{~A}^{2} \mathrm{~s}$
Thermal overload protection	LASUP62		

Softstarter, 2-phase Controlled
Dimensions

Wiring Connections (Module 45/90mm) Wiring type with or without cable/sleeves and other type of terminals *UL tested
L1 T1 / L2 T2 / L3 T3 M4 Power terminals
L1 T1 / L2 T2 / L3 T3 M3 Power terminals
A1 A2 / 11 12
Input terminals

Important: When using electric or pneumatic tools for screw terminals observe the maximum torque limits

Circuit Diagram

1) for LASUP62 (see "Accessories for Torque Limiters and Soft Starters")
2) Control voltage

DESCRIPTION	AVAILABLE	ORDER NO.
3-pole, 2-phase controlled, 15A, 208-230VAC	LAK32155	
3-pole, 2-phase controlled, 15A, 400-480VAC	LAK34155	
3-pole, 2-phase controlled, 25A, 400-480VAC	LAK34255	

Torque Limiters and Soft Starters

Softstarter, 2-phase Controlled with Integrated Bypass

Schrack-Info

- The reduction of mechanical strikes at starting and vibations during operation are only two aspects for the application of semiconductor based Softstarters. Not necessary replacement of Y-D assemblies, variable ratio transformers or series resistors and therefore increased flexibility makes Softstarters to an efficient solution. A wide range of products for variable power with rated currents up to 200A is available.
- Scopes of application are compressors, conveyors, water pumps and fans

	LAKA4		
Main contacts			
Operational voltage	$3 \times 200 \mathrm{VAC}-440 \mathrm{VAC}(+10 \% /-15 \%) / 45-66 \mathrm{~Hz}$		
	Operational current AC-53b (with bypass) - normal operation		
Operational current AC-53b (with bypass)		at 40°	at 50°
	LAKA4034	34A	31 A
	LAKA4042	42A	38A
	LAKA4048	48A	44A
	LAKA4060	60A	55A
	LAKA4075	75A	69A
	LAKA4085	85A	78A
	LAKA4100	100A	100A
	LAKA4140	140A	133A
	LAKA4170	170A	157A
	LAKA4200	200A	186A
Class index 53b	4-6:594		
	4 x rated current for max. 6 s		
	min . 594 s between start cycles		
Connection	3 -wire		
Thermal overload relay	not integrated		
Control			
Control voltage	100-240VAC (+10\%/-15\%) / 380-440VAC (+10\%/-15\%)		
Power consumption - normal operation	$\leq 100 \mathrm{~mA}$		
Power consumption - start	$\leq 10 \mathrm{~mA}$		
Terminal Start N 1	NO contact, max. 300VAC		
Terminal Stop N2	NC contact, max. 300VAC		

Dimensions

LAKA4034 - LAKA4100

[mm]

Softstarter, 2-phase Controlled with Integrated Bypass

- Circuit Diagrams
(1)

(2)

Examples:

1) LAKA soff starter installed with a motor protection switch/circuit breaker
2) LAKA soft starter installed with a motor protection switch/circuit breaker and line contactor K1M
a) Control voltage
b) Control contacts $13-14$:
$\max 6 \mathrm{~A}$ at $30 \mathrm{VDC} / \mathrm{ACl1}$
$\max 2 \mathrm{~A}$ at $400 \mathrm{VAC} / \mathrm{ACl}$
Control Circuits

3) Two wire control
4) Three wire control
*Also resets the soff starter

DESCRIPTION	AVAILABLE
3-pole, 2-phase controlled $200-440 \mathrm{~V} / 34 \mathrm{~A}$ without motor protection	ORDER NO.
3-pole, 2-phase controlled $200-440 \mathrm{~V} / 42 \mathrm{~A}$ without motor protection	LAKA4034
3-pole, 2-phase controlled $200-440 \mathrm{~V} / 48 \mathrm{~A}$ without motor protection	LAKA4042
3-pole, 2-phase controlled $200-440 \mathrm{~V} / 60 \mathrm{~A}$ without motor protection	LAKA4048
3-pole, 2-phase controlled $200-440 \mathrm{~V} / 75 \mathrm{~A}$ without motor protection	LAKA4060
3-pole, 2-phase controlled $200-440 \mathrm{~V} / 85 \mathrm{~A}$ without motor protection	LAKA4075
3-pole, 2-phase controlled $200-440 \mathrm{~V} / 100 \mathrm{~A}$ without motor protection	LAKA4085
3-pole, 2-phase controlled $200-440 \mathrm{~V} / 140 \mathrm{~A}$ without motor protection	LAKA4100
3-pole, 2-phase controlled $200-440 \mathrm{~V} / 170 \mathrm{~A}$ without motor protection	LAKA4140
3-pole, 2-phase controlled $200-440 \mathrm{~V} / 200 \mathrm{~A}$ without motor protection	LAKA4170

Torque Limiters and Soft Starters

Softstarter, 2-phase Controlled with Integrated Bypass and Function "Motor Protection"

Schrack-Info

- The reduction of mechanical strikes at starting and vibations during operation are only two aspects for the application of semiconductor based Softstarters. Not necessary replacement of Y-D assemblies, variable ratio transformers or series resistors and therefore increased flexibility makes Softstarters to an efficient solution. A wide range of products for variable power with rated currents up to 200A is available.
- Scopes of application are compressors, conveyors, water pumps and fans

	LAKS4		
Main contacts			
Operational voltage	$3 \times 200 \mathrm{VAC}-440 \mathrm{VAC}(+10 \% /-15 \%) / 45-66 \mathrm{~Hz}$		
	Operational current AC-53b (with bypass) - normal operation		
Operational current AC-53b (with bypass)		at 40°	at 50°
	LAKS034	34A	31 A
	LAKS042	42A	38A
	LAKS048	48A	44A
	LAKS060	60A	55A
	LAKS075	75A	69A
	LAKS085	85A	78A
	LAKS 100	100A	100A
	LAKS 140	140A	133A
	LAKS 170	170A	157A
	LAKS200	200A	186A
Class index 53b	4-6:594		
	4 x rated current for max. 6 s		
	min . 594 s between start cycles		
Connection	3 -wire		
Thermal overload relay	integrated		
Control			
Control voltage	100-240VAC (+10\%/-15\%) / 380-440VAC (+10\%/-15\%)		
Power consumption - normal operation	s100m		
Power consumption - start	$\leq 10 \mathrm{~mA}$		
Terminal Start N1	NO contact, max. 300VAC		
Terminal Stop N2	NC contact, max. 300VAC		

Softstarter, 2-phase Controlled with Integrated Bypass and Function "Motor Protection"
Dimensions

Circuit Diagrams

Examples:

1) LAKS soff starter installed with a system protection circuit breaker complete with a shunt trip device
2) LAKS soff starter installed with a system protection circuit breaker and line contactor K1M
a) Control voltage
c) Auxiliary contact for "Trip"
b) Control contacts 13-14:
d) shunt release
$\max 6 \mathrm{~A}$ at $30 \mathrm{VDC} / \mathrm{AC} 11$
e) thermistor connection
$\max 2 \mathrm{~A}$ at $400 \mathrm{VAC} / \mathrm{ACl}$

Torque Limiters and Soft Starters

Softstarter, 2-phase Controlled with Integrated Bypass and Function „Motor Protection

- Control Circuits

1) Two wire control
2) Three wire control
*Also resets the soft starter

| DESCRIPTION | ORDER NO. |
| :--- | :--- | :--- |
| 3-pole, 2-phase controlled $200-440 \mathrm{~V} / 34 \mathrm{~A}$ with motor protection | LAKS4034 |
| 3-pole, 2-phase controlled $200-440 \mathrm{~V} / 42 \mathrm{~A}$ with motor protection | LAKS4042 |
| 3-pole, 2-phase controlled $200-440 \mathrm{~V} / 48 \mathrm{~A}$ with motor protection | LAKS4048 |
| 3-pole, 2-phase controlled $200-440 \mathrm{~V} / 60 \mathrm{~A}$ with motor protection | LAKS4060 |
| 3-pole, 2-phase controlled $200-440 \mathrm{~V} / 75 \mathrm{~A}$ with motor protection | LAKS4075 |
| 3-pole, 2-phase controlled $200-440 \mathrm{~V} / 85 \mathrm{~A}$ with motor protection | LAKS4085 |
| 3-pole, 2-phase controlled $200-440 \mathrm{~V} / 100 \mathrm{~A}$ with motor protection | LAKS4140 |
| 3-pole, 2-phase controlled $200-440 \mathrm{~V} / 140 \mathrm{~A}$ with motor protection | LAKS4170 |
| 3-pole, 2-phase controlled $200-440 \mathrm{~V} / 170 \mathrm{~A}$ with motor protection | LAKS4200 |
| 3-pole, 2-phase controlled $200-440 \mathrm{~V} / 200 \mathrm{~A}$ with motor protection | |

Softstarter, 3-phase Controlled

Schrack-Info

- The reduction of mechanical strikes at starting and vibations during operation are only two aspects for the application of semiconductor based Softstarters. Not necessary replacement of Y-D assemblies, variable ratio transformers or series resistors and therefore increased flexibility makes Softstarters to an efficient solution. A wide range of products for variable power with rated currents up to 200A is available.
- Scopes of application are compressors, conveyors, water pumps and fans

	LATB4355	LATD4605
Main contacts		
Line voltage	400-480VAC 50/60Hz	
Operational current AC-53a (without Bypass)	35A	60A
Operational current AC-53b (with Bypass)	50A	86A
Connection	3 -wires	6-wires (Wurzel3)
Class index AC-53a (without Bypass)	X-Tx: 6-6: 100-120	
	6 x rated current for max. 6 s	
	100\% duty cycle, 120 switching cycles / h	
Class index AC-53b (with Bypass)	X-Tx: 6-6:30	
	6 -facher rated current for max. 6 s	
	min . 30 s between start cycles	
Load class	10 or 10A	
Leakage current	max. 5 mA	
Load current	min. 50 mA	
Start time setting range	$0.5-30 \mathrm{~s}$	
Stop time setting range	$0.5-60 \mathrm{~s}$	
Torque adjustment	0-85\% of the nominal torque Kick-Start (200ms)	
Thermal overload relay	extern	
Control		
Control voltage	24-480 VAC/DC	
Active control range	$24-528$ VAC/DC	
Inactive control range	0-5 VAC/DC	
max. response voltage	-	
min. dropout voltage	-	
max. current for no operation	1 mA	
max. response time	70 ms	
max. current / power	$15 \mathrm{~mA} / 2 \mathrm{VA}$	
Thermal and mechanical characteristic		
Power loss at PD max., without bypass	3W/A without bypass	
Power loss at bridged contactor	$5 \mathrm{~W} / \mathrm{A}$ with bypass	
Cooling	natural convection	
Mounting	vertical +/-30	
Mounting distance - vertical mounting	$0 \mathrm{~mm} /$ horizontal min. 80 mm	
Mounting distance - horizontal mounting	max. 50% operational currents at 0 mm (not recommended)	
Operating temperature range according to EN60947-4-3	-5 up to $40^{\circ} \mathrm{C}$	
Storage temperature range according to EN60947-4-3	-20 up to $80^{\circ} \mathrm{C}$	
max. operating temperature	$60^{\circ} \mathrm{C}$	
Derating	100% at $40^{\circ} \mathrm{C}, 80 \%$ at $50^{\circ} \mathrm{C}, 70 \%$ at $60^{\circ} \mathrm{C}$	
Rated insulation voltage U_{i}	660 V	
Impulse withstand voltage $\mathrm{U}_{\text {imp }}$	4 kV	
Installation category	III	
Degree of protection	IP20	
Pollution degree	3	
Width	180 mm	180 mm
Height	140 mm	140 mm
Depth	144.8 mm	144.8 mm
Weight	2700 g	2700 g
Material	enclosure: PPO UL94V1; heat sink: aluminium; base plate: galvanized steel	
Protective equipment		
Short-circuit protection installation - fuse	$125 \mathrm{~A} \mathrm{gl} / \mathrm{gG}$	$125 \mathrm{~A} \mathrm{gl} / \mathrm{gG}$
Short-circuit protection installation and solid-state contactor - fuse	$25300 \mathrm{~A}^{2} \mathrm{~s}$	$25300 \mathrm{~A}^{2} \mathrm{~s}$
Thermal overload protection	LASUP62	

Torque Limiters and Soft Starters

Softstarter, 3-phase Controlled

Dimensions

Die genannten Drahtstärken gelten für Anschlussdrähte mit und ohne Aderendhülsen oder andere löffreie Anschlussarten.									
L1 T1 / L2 T2 / L3 T3 *M6 Betriebsspannungsklemmen	$\begin{aligned} & 1 \times * 4- \\ & * 35 \mathrm{~mm}^{2} \end{aligned}$	$\begin{aligned} & 2 \times * 2- \\ & 16 \mathrm{~mm}^{2} \end{aligned}$	$\begin{aligned} & 1 \times 4- \\ & 35 \mathrm{~mm}^{2} \end{aligned}$	$\begin{aligned} & 2 \times 4- \\ & 10 \mathrm{~mm}^{2} \end{aligned}$	$\begin{gathered} 1 \times 4- \\ * 50 \mathrm{~mm}^{2} \end{gathered}$	$\begin{aligned} & 2 \times 4- \\ & 16 \mathrm{~mm}^{2} \end{aligned}$	N.A.	Pozidriv 3 4Nm, * $5,5 \mathrm{Nm}$ Max.	N.A.

Wichtig: Wenn Sie für die Montage elektrisch oder pneumatisch betriebene Werkzeuge einsetzen, müssen Sie unbedingt auf die angegebenen maximalen Drehmomente achten.
Circuit Diagram

1) for LASUP62 (see "Accessories for Torque Limiters and Soft Starters")
2) Connections 13-14: for Start/Stop function
3) Control voltage A1-A2
4) Connections 23-24: for bypass protection

DESCRIPTION	AVAILABLE
$35 A / 400-480 V A C$	ORDER NO.
$60 \mathrm{~A} / 400-480 \mathrm{VAC}$	LATB4355

Accessories for Torque Limiters and Soft Starters

Schrack-Info

- For all Solid state contactor, Motor controllers, Reversing contactors and Analog controllers a Thermal overload relais is recommended. The optional thermal protection unit has to be snapped directly into the allocated space of device and wired to its accoding terminals. At overheating of Solid state contactor, the thermal protection unit disconnects the supply. Reset can be done manually or automatically according cooling down status of drive.

LASUP62

DESCRIPTION	ORDER NO.
Thermal overload protection $/$ thermostat	LASAILABLE

A		Mechanical Interlock and Connection Clips	241	Relay Sockets for Schrack, Series MT	50
Auxiliary Contactors, Size 3, DC Coil	193	Mechanical Interlock for Contactors	259	Relay Sockets for Schrack, Series PT	45
		Micro Auxiliary Contactors, Size M	189	Relay Sockets for Schrack, Series RT	37
C		Micro Contactors LA, Size M	172	Relay Sockets for Schrack, Series XT	40
Capacitor Switching Contactors LA, Size 3	195	Mini Auxiliary Contactors, Size 1	191	Relays	4
Connection Clips for Contactors	260	Mini Contactors LA, Size 1	174	Reversing Contactor Combinations LS	254
Connection Link for Motor Protection Switches		Modular Contactors	156	Reversing Contactor Combinations	
and Contactors	243	Modular Contactors „Amparo" AC-1, AC Coil	163	Series ALEA LSW	254
Contactors for Photovoltaic Plants	187	Modular Contactors „R" AC-1, AC Coil	158		
Contactors Series CUBICO Classic, 3-pole	269	Modular Contactors „R" AC-1, ACDC Coil	161	S	
Contactors Series CUBICO Mini	266	Modular Contactors „Amparo" AC-1, AC Coil	163	Sidemounted Auxiliary Contacts for Contactors	
Contactors Series CUBICO Mini, 3-pole	266	Modular Contactors „R" AC-1, AC Coil	158	K3-24 to K3-115	198
		Modular Contactors „R" AC-1, ACDC Coil	161	Solder Pin Adapter	242
D		Modular Relays	92	Solid State Contactors	452
Diode Combination DBS	154	Motor Protection Relays Series LA	378	Star-Delta Contactor Combinations LSY	261
Direct on Line Starters D.O.L.		Motor Protection Switches	408	Star-Delta Contactor Combinations	
with Selector Switch	202	Motor Protection Switches Series ALEA BES	452	Series ALEA LSY	261
		Motor Protection Switches Series BE5, BE6	410	Star-Delta Timers	243
E				Summary Alarm Indicators	152
EASY PLC Series	94	P		Summary Alarm Indicators SSM 11-24V-DC	152
Electromechanical Contactors	170	Parallel Connectors (Star Jumper)	264	Supressor Units	250
Electromechanical Contactors Series ALEA LS	203	Parallel Connectors (Star Jumper)		Surge Supressors (plug in)	243
Electromechanical Contactors Series LA	172	and Feed Terminals	240		
		PLC Series EASY	94	T	
F		Plug-in Relays	6	Terminal Covers	252
Feed Terminals	264	Plug-in Relays S-Relay, Series 4	18	Thermal Overload Relays	376
Force-guided Contacts Relays Schrack,		Plug-in Relays Schrack, Series MT	27	Thermal Overload Relays Series ALEA LST	380
Series SR	85	Plug-in Relays Schrack, Series PT	23	Thermal Overload Relays Series CUBICO	387
Force-guided Contacts Relays Schrack,		Plug-in Relays Schrack, Series RM	30	Timer Relays	96
Series SR,		Pluggable Interface Relay Schrack, Series XT	15	Timer Relays Series AMPARO	112
in DIN Rail Module	89	Power Contactors LA, Size 2	176	Timer Relays Series ZR4	107
Force-guided Contacts Relays Schrack,		Power Contactors LA, Size 3	176	Timer Relays Series ZR4, for Round 11 Pole	
Series SR, Print Versio	85	Power Relays Schrack, Series RT	8	Plug-in Socket	107
Front- and Sidemounted Auxiliary Contacts f		Print Relay Sockets for PT Relays	57	Timer Relays Series ZR5	98
or Contactors K3-116 to K3-31	199	Print Relay Sockets for Schrack, Series RT	55	Timer Relays Series ZR6	116
Frontmounted Auxiliary Contacts for Contactors		Print Relays	58		
K3-450 to K3-550	201	Print Relays Schrack, Series PE	58	W	
Frontmounted Auxiliary Contacts for Contactors		Print Relays Schrack, Series PT	82	Wiring Sets	241
Size 00	236	Print Relays Schrack, Series RE	60	Wiring Sets for Reversing Contactor	
		Print Relays Schrack, Series RP	62	Combinations	260
L		Print Relays Schrack, Series RT	68	Wiring Sets for Star-Delta Contactor	
Latching Block	251	Print Relays Schrack, Series RY	78	Combinations	265
LSD, LSS Contactors for Switching Motors	203	Print Relays Schrack, Series SNR	80		
LSHD Auxiliary Contactors	233	Probes for Level Monitoring Relays	149		
LSK Capacitor Switching Contactors	230				
LSR Contactors	225	R			
LSU Contactors	221	Relay Module	150		
		Relay Package Schrack, Series SNR	6		
M		Relay PCB	150		
Measuring and Monitoring Relays	120	Relay Sockets \& Sets	36		
Measuring and Monitoring Relays		Relay Sockets and Sets Schrack, Series SNR	36		
Series AMPARO	132	Relay Sockets for S-Relay, Series RS4	43		
Measuring and Monitoring Relays Series UR5	122	Relay Sockets for Schrack, Serie RM			
Measuring and Monitoring Relays Series UR6	137	(RMxx2xxx)	53		

ORDER NO.	PAGE
B	
BEO72896	424
BE082882	413
BE082882	417
BE082882	424
BE082884	413
BE082884	417
BE082884	424
BE500250	413
BE500400	413
BE500630	413
BE501000	413
BE501600	413
BE502500	413
BE504000	413
BE506300	413
BE510000	413
BE516000	413
BE520000	413
BE525000	413
BE532000	413
BE590001	419
BE590002	419
BE590011	420
BE590245	420
BE590345	420
BE590354	420
BE590445	420
BE590454	420
BE590545	420
BE590554	420
BE590851	424
BE599654	422
BE599655	422
BE632000	417
BE640000	417
BE650000	417
BE658000	417
BE663000	417
BE695524	422
BE695526	422
BES00016	428
BESOOO20	428
BES00025	428
BES00032	428
BESOOO40	428
BESOOO50	428
BESO0063	428
BESOOO80	428
BES00100	428
BESO0125	428
BESOO160	428
BESOO200	428
BES00250	428
BES00320	428
BES00400	428
BESOO500	428
BESOO630	428
BESOO800	428
BES01000	428
BESO1200	428

ORDER NO.	PAGE	ORDER NO.	PAGE	ORDER NO.	PAGE
BES01600	428	BZ326421	162	EA212319	95
BESO2000	428	BZ326437	162	EA232112	95
BESO2200	428	BZ326438	162	EA256267	95
BESO2500	428	BZ326439	162	EA256277	95
BES22500	430	BZ326442	162	EA270884	95
BES23200	430	BZ326443	162	EA274103	95
BES24000	430	BZ326444	162	EA274104	95
BES24500	430	BZ326445	162	EA274108	95
BES25000	430	BZ326452	162	EA274109	95
BES36300	432	BZ326453	162	EA274110	95
BES37500	432	BZ326454	162	EA274113	95
BES39000	432	BZ326455	162	EA274115	95
BES39999	432	BZ326456	162	EA274119	95
BESD0016	426	BZ326457	162	EA274121	95
BESD0020	426	BZ326458	162	EA284545	95
BESD0025	426	BZ326459	162		
BESD0032	426	BZ326460	162	I	
BESD0040	426	BZ326460VM	164	IK022176	151
BESD0050	426	BZ326461	162		
BESD0063	426	BZ326461VM	164	L	
BESD0080	426	BZ326462	162	LA003115K3	202
BESD0100	426	BZ326462VM	164	LA003116K3	202
BESD0125	426	BZ326463	162	LA003117K3	202
BESD0160	426	BZ326463VM	164	LA100770	192
BESD0200	426	BZ326464	162	LA 100773	192
BESD0250	426	BZ326464VM	164	LA 100774	192
BESD0320	426	BZ326465	162	LA 100775	192
BESD0400	426	BZ326465VM	164	LA 100776	192
BESD0500	426	BZ326466	162	LA100780	192
BESD0630	426	BZ326467	162	LA100783	192
BESD0800	426	BZ326467VM	164	LA 100784	192
BESD1000	426	BZ326468	162	LA 100785	192
BESD 1200	426	BZ326469	162	LA100786	192
BEZOOOO1	433	BZ326470	162	LA100790	192
BEZO0002	433	BZ326470VM	164	LA 100793	192
BEZO0003	433	BZ326471	162	LA 100795	192
BEZO0004	433	BZ326472	162	LA 100796	192
BEZO0005	434	BZ326472VM	164	LA100910	175
BEZO0006	435	BZ326473	162	LA100913	175
BEZ00007	435	BZ326474	162	LA 100915	175
BEZO0008	435	BZ326475	162	LA10091B	175
BEZO0009	435	BZ326476	162	LA10091C	175
BEZOOO10	439	BZ326479	162	LA100920	175
BEZOOO11	439	BZ326480	162	LA100923	175
BEZO0012	438	BZ326481	162	LA100925	175
BEZO0013	438	BZ326482	162	LA100943	175
BEZOOO14	438	BZ326482VM	164	LA 10094B	175
BEZO0016	440	BZ326483	162	LA 190100	177
BEZO0017	438	BZ326483VM	164	LA190100	181
BEZO0018	438	BZ326486	162	LA 190100	184
BEZO0019	439	BZ326487	162	LA 190100	194
BEZO0020	438	BZ326488	162	LA190100	197
BEZO0021	438	BZ326489	162	LA 190101	177
BEZOO112	438	BZ326490	162	LA190101	181
BEZOO116	440	BZ651000	93	LA190101	184
BEZOO212	438	BZ652000	93	LA 190101	194
BEZOO213	438			LA 190101	197
BEZOO216	440	E		LA190134	184
BEZOO217	438	EA107926	95	LA190134	197
BEZOO218	438	EA202409	95	LA190134	198
BEZOO219	439	EA212314	95	LA 190135	177

ORDER NO.	PAGE	ORDER NO.	PAGE
LA190135	181	LA300475N	194
LA190135	184	LA300485N	194
LA190135	197	LA300495N	194
LA190137	177	LA3004A5N	194
LA190137	181	LA301010N	180
LA190137	184	LA301011N	0
LA190137	197	LA301012N	180
LA190138	177	LA301013N	180
LA190138	181	LA301014N	180
LA190138	184	LA301015N	180
LA190138	194	LA301020N	0
LA190138	197	LA301023N	80
LA190139	177	LA301024N	180
LA190139	181	LA301025N	0
LA190139	184	LA301043N	0
LA190139	194	LA301410N	0
LA190139	197	LA301411N	80
LA190143	175	LA301412N	0
LA 190144	184	LA301413N	0
LA190144	186	LA301414N	0
LA190144	188	LA301415N	0
LA190144	200	LA301418N	80
LA190145	184	LA301420N	0
LA 190145	186	LA301422N	0
LA190145	188	LA301423N	180
LA190145	200	LA301424N	0
LA190146	184	LA301425N	180
LA190146	186	LA301443N	80
LA190146	188	LA3014C3N	80
LA190146	200	LA301810N	180
LA190147	186	LA301811 N	0
LA190147	201	LA301812N	180
LA190150	175	LA301813N	180
LA190151	175	LA301814N	81
LA190152	175	LA301815N	80
LA190153	192	LA301816N	180
LA190154	192	LA301820N	180
LA 190155	192	LA301823N	181
LA190156	192	LA301825N	180
LA202343	177	LA301843N	81
LA203043	177	LA302210N	81
LA203742	177	LA302211N	81
LA203743	177	LA302212N	181
LA204543	177	LA302213N	1
LA206043	177	LA302214N	81
LA300100K3	379	LA302215N	181
LA300101K3	379	LA302216N	181
LA300102K3	379	LA302223N	81
LA300103k3	379	LA302224N	81
LA300104K3	379	LA302225N	181
LA300105K3	379	LA302243N	181
LA300106K3	379	LA302430	81
LA300107K3	379	LA302431	181
LA300108K3	379	LA302432	181
LA300109K3	379	LA302433	181
LA300110K3	379	LA302435	181
LA300111 K3	379	LA302436	181
LA300112K3	379	LA3030D3PV	188
LA300113к3	379	LA303230	181
LA300114K3	379	LA303231	181
LA300126K3	379	LA303232	181

Stнраски

O.	GE	ORDER NO.	PAGE								
LA303233	81	LAKS4034	474	LSD01233	208	ISDD 1220	205	LST00400	383	LSY03233	263
LA303234	81	LAKS4042	474	LSD01235	208	LSDD 1222	205	LST00500	383	LSY25033	263
LA303235	81	LAKS4048	474	LSD01730	208	LSDD 1223	205	LST00630	383	LSYD1733	263
LA303236	181	LAKS4060	74	LSD01732	208	ISDD 1225	205	LST00800	383	1szooool	250
LA304030	81	LAKS4075	474	LSD01733	208	LSDE225F	220	LSTO1000	383	LSZ00002	50
LA304031	181	LAKS4085	474	LSD01734	208	LSDE265F	220	LSTO1250	383	LSZ00003	250
LA304032	181	LAKS4100	474	LSD01735	208	LSDE305F	220	LSTO1600	383	LSZ00113	251
LАЗ04033	181	LAKS4140	474	LSD02530	208	LSDG415F	220	LSTO2000	383	Iszodool	208
LA304034	181	LAKS4170	474	LSD02532	208	LSDG515F	220	LST02200	383	ISZODOO1	210
LA3	181	LAKS4200	474	LSD02533	208	LSDH	220	LST02500	383	iszodo	213
LA3	184	LAM34154	461	LSD02535	208	ISD	220	LST20800	384	LSZ	220
LA305032	184	LAMDO510	173	LSD23230	210	LSDH	220	LST21000	384	ODOO	229
LA3	184	MDO	173	D23232	210	LSDH83	220	2160	384	LSZODOO1	229
LA30503	184	LAMD051	173	LSD23233	210	ISHD0670	235	LST2200	384	iszodoo	244
LA306230	184	LAMD051	173	LSD23235	210	ISHD0673	235	LST22500	384	LSZOD002	249
LA306231	184	LAMD0520	173	LSD24030	210	ISHD0675	235	LST23200	384	LSZ00003	264
LA306232	184	LAMD0523	73	LSD24032	210	ISHD067G	235	LST24000	384	LSzoD004	249
LA306233	184	LAMD0524	73	LSD24033	210	ISHD067N	235	LST24500	84	LSZODO10	208
LA306234	84	LAMD0525	73	LSD24035	210	LSHD0680	235	LST25000	384	LSZOD010	210
LA306235	184	LAMD0540	73	LSD25030	210	LSHD0683	235	LST32500	385	LSZODO10	213
LA307432	184	LAMD0543	73	ISD25032	210	ISHD0685	235	LST34000	385	LSZODO10	220
LA307433	184	LAMD0544	73	LSD25033	210	ISHD068N	235	LST35000	385	LSZODO10	229
LA307434	184	LAMD0545	173	LSD25035	210	LSHD0690	235	LST36300	385	LSZODO10	229
LA309033	184	LАмноз70	190	ISD3653	213	LSHD0693	235	LST37500	385	D0010	244
LA3090	184	ᄂАмно	190	LSD365	213	ISHD0695	235	LST39000	385	LSZOD113	208
LA31153	184	LAMHO3	190	LSD365	213	LSHD069	235	LST39999	385	LSZOD113	210
LA31164	184	LАмнозво	190	LSD3653	213	ISHD069N	235	LSTD0016	381	LSZOD113	213
LA31500H	84	Lамноз8з	190	LSD36553	213	Lsk03213	232	ISTD0020	381	LSZOD113	220
LA315043	84	LAмH0385	190	LSD38030	213	LSK36213	232	ISTD0025	381	LSZOD113	228
LA31750H	184	LАмноз90	190	LSD38032	213	LSkD17B3	232	ISTD0032	381	LSZOD 113	229
LA317543	184	LАмноз93	190	LSD38033	213	LSR03540	228	LSTD0040	381	LSzod 113	229
LАЗ2103H	186	LАмноз95	190	LSD38035	213	LSR03543	228	ISTD0050	381	LSZOD113	246
LАЗ2603H	186	LAMZTS	73	LSD38050	213	LSR035	228	LSTD0063	381	LSZOD 122	208
LA3316	186	LAMZTS 15	190	LSD38052	213	LSR04040	228	LSTD0080	381	ISZOD 122	210
LA34500H	186	LAMZTS35	173	LSD39530	213	LSR04043	228	LSTD0100	381	LSZOD 122	213
LA3550	186	ZTS	190	LSD3953	213	LSR04045	228	LSTD0125	381	LSZOD 122	220
LA3	197	LAS 12301	455	LSD39535	213	40	229	60	381	122	22
LA3K18	197	LAS	455	D395	213	LSR26043	229	D0200	381	122	228
LA3K1A33	197	LAS 1430	55	.SD6115F	220	ISR26045	229	LSTD0250	381	ISZOD 122	229
LA3K2433	197	LAS 14501	455	LSD6155F	220	LSR3140	229	LSTD0320	381	LSZOD 122	22
LA3K3233	197	LAS22302	457	ISD6195F	220	LSR31143	229	ISTD0400	381	ISZOD 122	246
LАЗК5033	197	LAS24301	457	ISDD0710	205	LSR31145	229	LSTD0500	381	LSZOD 122 F	208
LАзк6233	197	LAS24501	457	LSDD0712	205	LSR31443	229	ISTD0630	381	LSZOD 122 F	210
LA3k7433	197	LAS24502	457	LSDD0713	205	LSR31445	229	LSTD0800	381	LSZOD 122 F	213
LАзк9033	197	LAS32202	459	ISDD0715	205	LSRD 1840	228	ISTD 1000	381	LSZOD 122 F	220
LAA14306	465	LAS34102	459	LSDD0720	205	LSRD 1843	228	LSTD 1200	381	LSZOD 122F	22
LAD34150	467	LAS34201	459	LSDD0722	205	LSRD 1845	228	Lsuo25c3	24	LSZOD 122 F	228
LAD34250	46	LAS3420	459	LSDD0723	205	LSRD2	228	SU240C3	224	LSZOD 122 F	229
LAK3215	469	LAS362	459	LSDD072	205	LSRD	228	LSUDI2C3	224	LSZOD 122 F	229
LAK34	469	LAS362	459	LSDD0910	205	LSRD	228	LSW01233	258	LSZOD 122 F	246
LAK34255	469	LASUP62	465	LSDD0912	205	LSSO123H	208	LSW01733	258	LSZOD131	208
LAKA4034	471	LASUP62	476	LSDD0913	205	LSSO173H	208	LSW02533	258	ISZOD 131	210
LAKA4042	471	LATB4355	476	LSDD0915	205	LSSO253H	08	LSW23233	258	LSZOD 131	213
LAKA4048	471	LATD4605	476	LSDD0920	205	LSSD071G	205	LSW24033	258	LSZOD 131	220
laka4060	471	LAW34102	463	LSDD0922	205	LSSDO72G	205	LSW25033	258	LSZOD 131	228
LAKA4075	471	LSD00930	208	LSDD0923	205	LSSD091G	205	LSW36533	258	LSZOD 131	229
LAKA4085	471	LSD00932	208	LSDD0925	205	LSSD092G	205	LSW38033	258	LSZOD 131	229
LAKA4100	471	LSD00933	208	LSDD 1210	205	LSSD 121 G	205	LSW39533	258	LSZOD 131	246
LAKA4140	471	LSD00935	208	LSDD 1212	205	LSSD 122 G	205	LSWD0733	258	ISZOD 131 F	208
LAKA4170	471	LSD01230	208	ISDD 1213	205	LST00250	383	LSWD0933	258	LSZOD 131F	210
laka4200	471	LSD01232	208	LSDD 1215	205	LST00320	383	LSWD1233	258	LSZODI31F	213

ORDER NO.	PAGE	ORDER NO.	PAGE	ORDER NO.	PAGE
LSZODI31F	220	LSZ3D004	249	LSZDW002	242
LSZODI31F	228	LSZ3D811	213	LSZDY001	242
LSZODI31F	229	LSZ3D811	220	LSZDY002	240
LSZOD131F	229	LSZ3D811	229	LSZED001	253
LSZOD131F	246	LSZ3D811	248	LSZED002	253
LSZOD 140F	208	LSZ3TE01	386	LSZEY003	264
LSZOD 140F	210	LSZ3W001	260	LSZGW001	260
LSZOD 140F	213	LSZ3W002	260	LSZHD001	253
LSZOD 140F	220	LSZ3Y004	264	LZDC09B0	270
LSZOD 140F	228	LSZ60001	250	LZDC09B3	270
LSZOD 140F	229	LSZ6D001	253	LZDC09B5	270
LSZOD 140F	229	LSZ6D002	253	LZDC12B0	270
LSZOD 140F	246	LSZ6W001	259	LZDC12B3	270
LSZ0D711	208	LSZ6Y003	264	LZDC12B5	270
LSZ0D711	210	LSZD0001	243	LZDC18B0	270
LSZ0D711	213	LSZD0002	243	LZDC18B3	270
LSZ0D711	220	LSZD0003	243	LZDC18B5	270
LSZ0D711	228	LSZD0004	243	LZDC25B0	270
LSZ0D711	229	LSZD0005	250	LZDC25B3	270
LSZ0D711	229	LSZD0006	250	LZDC32B0	270
LSZ0D711	232	LSZD0101	243	LZDC32B3	270
LSZ0D711	248	LSZD0102	243	LZDC38B0	270
LSZ0D901	208	LSZD0501	205	LZDC38B3	270
LSZ0D901	210	LSZD0501	228	LZDM0610	267
LSZ0D901	213	LSZD0501	235	LZDM0613	267
LSZ0D901	220	LSZD0501	237	LZDM0615	267
LSZ0D901	229	LSZD0501	239	LZDM0620	267
LSZ0D901	229	LSZD0510	205	LZDM0623	267
LSZ0D901	244	LSZD0510	228	LZDM0625	267
LSZ0D910	208	LSZD0510	235	LZDM0910	267
LSZ0D910	210	LSZD0510	237	LZDM0913	267
LSZ0D910	213	LSZD0510	239	LZDM0915	267
LSZ0D910	220	LSZDD001	240	LZDM0920	267
LSZ0D910	229	LSZDD002	242	LZDM0923	267
LSZ0D910	229	LSZDD004	240	LZDM0925	267
LSZ0D910	244	LSZDD005	243	LZDM 1210	267
LSZOTE01	386	LSZDD006	243	LZDM 1213	267
LSZOW001	260	LSZDD201	205	LZDM 1215	267
LSZOW002	259	LSZDD201	237	LZDM 1220	267
LSZOW003	260	LSZDD212	205	LZDM 1223	267
LSZOW004	260	LSZDD212	237	LZDM 1225	267
LSZOY001	265	LSZDD213	205	LZTC0025	390
LSZOYOO2	264	LSZDD213	237	LZTC0040	390
LSZ20001	250	LSZDD222	205	LZTC0063	390
LSZ2D001	260	LSZDD222	224	LZTC0100	390
LSZ2D002	253	LSZDD222	237	LZTC0160	390
LSZ2D003	264	LSZDH522	205	LZTC0250	390
LSZ2D004	249	LSZDH522	224	LZTC0400	390
LSZ2D005	249	LSZDH522	228	LZTC0600	390
LSZ2TE01	386	LSZDH522	235	LZTC0800	390
LSZ2W001	260	LSZDH522	239	LZTC1000	390
LSZ2W002	260	LSZDH531	205	LZTC 1300	390
LSZ2W003	260	LSZDH531	228	LZTC1800	390
LSZ2Y001	265	LSZDH531	235	LZTC2400	390
LSZ2Y002	265	LSZDH531	239	LZTC3200	390
LSZ2Y003	265	LSZDH540	205	LZTC3800	390
LSZ2Y004	265	LSZDH540	228	LZTM0016	388
LSZ2Y005	264	LSZDH540	235	LZTM0025	388
LSZ3D001	264	LSZDH540	239	LZTM0040	388
LSZ3D002	253	LSZDTE01	386	LZTM0063	388
LSZ3D003	249	LSZDW001	242	LZTM0100	388

ORDER NO.	PAGE	ORDER NO.	PAGE
LZTM0160	388	MTMLOO24	29
LZTM0250	388	MTMLO024	52
LZTM0400	388	MTMTOOAO	29
LZTM0600	388	MTMTOOAO	52
LZTM0800	388	MTMU0730	29
LZTM 1000	388	MTMU0730	52
LZTM 1300	388	MTMZOW00	29
LZZCH002	272	MTMZOWOO	52

ORDER NO.	PAGE
PT580524	26
PT580615	26
PT580730	26
PT580L24	26
PT580T30	26
PT581024	84
PT78604	49
PT78604	57
PT78742	26
PT78742	49
PT7874P	26
PT7874P	49

Stнраскй

ORDER NO.	PAGE	ORDER NO.	PAGE
RS410012	22	RT33K012	77
RS410024	22	RT33K024	13
RS410048	22	RT33K024	77
RS410060	22	RT424006	13
RS410110	22	RT424006	77
RS410220	22	RT424012	13
RS410506	22	RT424012	77
RS410512	22	RT424024	13
RS410524	22	RT424024	77
RS410548	22	RT424048	13
RS410615	22	RT424048	77
RS410730	22	RT424060	13
RS410LC4	22	RT424060	77
RS410MBO	22	RT424110	13
RS410N20	22	RT424110	77
RS410R24	22	RT424524	13
RS410S 15	22	RT424524	77
RS410T30	22	RT424548	13
RT114012	13	RT424548	77
RT114012	77	RT424615	13
RT114024	13	RT424615	77
RT114024	77	RT424730	13
RT114524	13	RT424730	77
RT114524	77	RT424A24	77
RT16041	56	RT424F12	77
RT17017	13	RT424F24	77
RT17017	17	RT425024	13
RT17017	17	RT425024	77
RT17017	39	RT425615	13
RT170P1	13	RT425615	77
RT170P1	17	RT425730	13
RT170P1	39	RT425730	77
RT170P1	42	RT78725	13
RTI70R8	13	RT78725	17
RTI70R8	17	RT78725	39
RTI70R8	39	RT78725	42
RT170R8	42	RT7872P	13
RT214012	13	RT7872P	17
RT214012	77	RT7872P	39
RT214024	13	RT7872P	42
RT214024	77	RTE24024	13
RT214730	13	RTE24024	77
RT214730	77	RTS3T024	13
RT28516	56	RTS3T024	77
RT314005	13	RY210012	79
RT314005	77	RY210024	79
RT314012	13	RY211024	79
RT314012	77	RY530012	79
RT314024	13	RY612024	79
RT314024	77		
RT314524	13	S	
RT314524	77	SNR03012	81
RT314730	13	SNR03024	81
RT314730	77	SNR 13024	81
RT315730	13	SR2Y5024	88
RT315730	77	SR2ZY024	91
RT31L024	13	SR4D4024	88
RT311024	77	SR4M4024	88
RT334024	13	SR6B4024	88
RT334024	77	SR6ZB024	91
RT33K012	13	ST36040	36

ORDER NO.	PAGE	ORDER NO.	PAGE	ORDER NO.		ORDER NO. PAGE	
ST37001	7	YMFDG230	49	YMRCW230	49	ZR4MF025-A	11
ST37001	36	YMlGA024	14	YMVAW024	14	ZR5B0011	106
ST37002	7	YMlGA024	17	YMVAW024	17	ZR5B0025	106
ST37002	36	YMlGA024	26	YMVAW024	26	ZR5E0011	106
ST37003	7	YMlGA024	39	YMVAW024	39	ZR5ERO11	106
ST37003	36	YMlGA024	42	YMVAW024	42	ZR5MF011	106
ST37040	7	YMlGA024	49	YMVAW024	49	ZR5MF025	106
ST37040	36	YMlGD024	14	YMVAW230	14	ZR5R0011	106
ST3FLC4	7	YMLGD024	17	YMVAW230	17	ZR5RTOII	106
ST3FLC4	36	YMLGD024	26	YMVAW230	26	ZR5SD025	106
ST3P2LC4	7	YMLGD024	39	YMVAW230	39	ZR6MF052	119
ST3P2LC4	36	YMlGD024	42	YMVAW230	42	ZRAE0011	115
ST3P3LB2	7	YMLGD024	49	YMVAW230	49	ZRAMFO11	115
ST3P3LB2	36	YMLGW230	14	YPT16016	26	ZRAROO11	115
ST3P3LC4	7	YMLGW230	17	YPT 16016	49		
ST3P3LC4	36	YMLGW230	26	YPT16040	26		
ST3P3TP0	7	YMLGW230	39	YPT16040	26		
ST3P3TP0	36	YMLGW230	42	YPT16040	26		
ST4P2LC4	36	YMLGW230	49	YPT16040	49		
ST4P3LC4	7	YmlRa024	13	YPT78110	26		
ST4P3LC4	36	YmlRa024	17	YPT78110	49		
ST4P3TPO	7	YmlRa024	26	YPT78702	25		
ST4P3TPO	36	YmlRa024	39	YPT78702	26		
		YmlRa024	42	YPT78702	49		
u		YmlRA024	49	YPT78703	25		
UR511011	131	YMLRD024	13	YPT78703	26		
UR5L1021	131	YMLRD024	17	YPT78703	49		
UR5P3011	131	YMLRD024	26	YPT78704	26		
UR5R1021	131	YMLRD024	39	YPT78704	49		
UR5U1011	131	YMLRD024	42	YRS 16009	22		
UR5U3011	131	YMLRD024	49	YRS 16009	44		
UR5U3N11	131	YMLRD024-A	13	YRS 16016	22		
UR611052	148	YMLRD024-A	17	YRS 16016	44		
UR6L1052	148	YMLRD024-A	26	YRS 16040	22		
UR6P3052	148	YMLRD024-A	39	YRS 16040	44		
UR6R1052	148	YMLRD024-A	42	YRS78704	22		
UR6U1052	148	YMLRD024-A	49	YRS78704	44		
UR6U3052	148	YMLRW230	14	YRSFL230	22		
URAP3011	136	YMLRW230	17	YRSLG024	22		
URAU3011	136	YMLRW230	26	YRSLG230	22		
URAU3N11	136	YMLRW230	39	YRSLR024	22		
URL90010	149	YMLRW230	42	YRSLR230	22		
URL90020	149	YMLRW230	49	YRT 16040	13		
URL90030	149	YMR78700	153	YRT16040	17		
URL91010	149	YMR78700	155	YRT16040	39		
		YMR78700	11	YRT16040	42		
x		YMR78700	29	YRT78624	13		
XT17017	17	YMR78700	52	YRT78624	17		
XT17017	17	YMR78701	29	YRT78624	39		
XT17017	42	YMR78701	52	YRT78624	42		
XT374LC4	17	YMRCW024	14	YRT78626	13		
XT484LC4	17	YMRCW024	17	YRT78626	17		
XT484R24	17	YMRCW024	26	YRT78626	39		
XT484T30	17	YMRCW024	39	YRT78626	42		
		YMRCW024	42	YSN90020	36		
Y		YMRCW024	49	YY494006	153		
YMFDG230	14	YMRCW230	14	YY494007	155		
YMFDG230	17	YMRCW230	17	YY494107	155		
YMFDG230	26	YMRCW230	26				
YMFDG230	39	YMRCW230	39	z			
YMFDG230	42	YMRCW230	42	ZR4B0025-A	111		

General Terms of Delivery

issued by the Austrian Electrical and Electronics Industry Association (FEEI)
of at most one half of one per cent, a total of no more than 5%, however, of the value of that part of the goods to be delivered which cannot be used on account of Seller's failure to deliver an essential part thereof, provided the Buyer has suffered a damage to the aforesaid extent. Assertion of rights of damages exceeding this extent is precluded.
6. Passage of risk and place of performance
6.1. Unless otherwise agreed, the delivery of goods is considered sold EXW in accordance with INCOTERMS® 2010.
6.2. For services, the place of performance shall be the place indicated in the written order confirmation, secondary to that at which the service is actually rendered by Seller. The risk in respect of such services or any part thereof shall pass to Buyer at the time the services have been rendered.
7. Payment
7.1. Unless otherwise agreed, one third of the purchase price shall fall due at the time of receipt by Buyer of the order confirmation of Seller, one third after half the delivery period has elapsed and the balance at the time of delivery. Irrespective thereof the turnover tax comprised in the amount of the invoice shall be paid within 30 days of the invoice date. If bankruptcy proceedings are instituted against the assets of Buyer or if an application for bankruptcy proceedings is not granted for insufficiency of assets, deliveries shall only be made against cash in advance.
7.2. In the case of part settlements the individual part payments shall fall due upon receipt of the respective invoices. The same shall apply to amounts invoiced for additional deliveries or resulting from additional agreements beyond the scope of the original contract, irrespective of the terms of payment agreed upon for the principal delivery.
7.3. Payment shall be made without any discount free Seller's domicile in the agreed currency. Drafts and checks shall be accepted on account of payment only, with all interest, fees and charges in connection therewith (such as col- lection and discounting charges) to be borne by Buyer.
7.4. Buyer shall not be entitled to withhold or offset payment on the grounds of any warranty claims or other counterclaims.
7.5. Payment shall be deemed to have been effected on the date at which the amount in question is at Seller's disposal.
7.6. If Buyer fails to meet the terms of payment or any other obligation arising from this or other legal transactions, Seller may without prejudice to his other rights a) suspend performance of his own obligations until payments have been made or other obligations fulfilled, and exercise his right to extend the period of delivery to a reasonable extent,
b) call in debts arisen from this or any other legal transactions and charge default interest amounting to 1.25% per month plus turnover tax for these amounts beginning with the due dates, unless Seller proves costs exceeding this.
c) only perform other legal transactions against cash in advance in the case of qualified insolvency, in other words, following two delays in payment.
In any case Seller has the right to invoice all expenses arising prior to a lawsuit, especially reminder charges and lawyer's fees.
7.7. Discounts or bonuses are subject to complete payment in due time.
7.8. Seller retains title to all goods delivered by him until receipt of all amounts invoiced including interests and charges. Buyer herewith assigns his claim out of a resale of conditional commodities, even if they are processed, transformed or combined with other commodities, to Seller to secure the latter's purchase money claim. In the case of resale granting respite Buyer shall have the power of disposal of the product under retention of ownership only with the proviso that upon reselling Buyer notifies the secondary buyer of the assignment for security or enters the assignment in his account books. Upon request Buyer has to notify the assigned claim and the debtor thereof to Seller, and to make all information and material required for his debt collection available and to notify the assignment to the third-party debtor. If the goods are attached or otherwise levied upon, Buyer shall draw attention to Sellers title and immediately inform Seller of the attachment or levy.
8. Warranty and acceptance of obligation to repair defects
8.1. Once the agreed terms of payment have been complied with, Seller shall, subject to the conditions hereunder, remedy any defect existing at the time of acceptance of the article in question whether due to faulty design, material or manufacture, that impairs the functioning of said article. From particulars appearing in catalogues, folders, promotional literature as well as written or oral statements which have not been included in the agreement no warranty obligations may be deduced.
8.2. Unless special warranty periods operate for individual items the warranty period shall be 12 months. These conditions shall also apply to any goods supplied, or services rendered in respect of goods supplied, that are firmly attached to buildings or the ground. The warranty period begins at the point of passage of risk acc. to paragraph 6 .
8.3. For improved or exchanged parts, the warranty period shall start again, but shall end in any case 6 months after the original warranty period has expired.
8.4. If delivery or the performance of services is delayed for reasons outside the control of Seller, the warranty period shall begin 2 weeks after Seller is ready to deliver or perform services.
8.5. The foregoing warranty obligations are conditional upon the Buyer giving within a reasonable period notice in writing of any defects that have occurred and such notice reaching the Seller. Buyer shall prove within a reasonable period the presence of a defect, in particular he shall make available within a reasonable period to Seller all material and data in his possession. Upon receipt of such notice Seller shall, in the case of a defect covered by the warranty under 8.1 above, have the option to replace the defective goods or defective parts thereof or else to repair them on Buyer's premises or have them returned for repair, or to grant a fair and reasonable price reduction.
8.6. Any expenses incurred in connection with rectifying defects (e. g. expenses for assembly and disassembly, transport, waste disposal, travel and siteto-quarters time) shall be borne by Buyer. For warranty work on Buyer's premises Buyer shall make available free of charge any assistance, hoisting gear, scaffolding and sundry supplies and incidentals that may he required. Replaced parts shall become the property of Seller.
8.7. If an article is manufactured by Seller on the basis of design data, design drawings, models or other specifications supplied by Buyer, Seller's warranty shall be restricted to non-compliance with Buyers specifications.
8.8. Seller's warranty obligation shall not extend to any defects due to assembly and installation work not undertaken by Seller, inadequate equipment, or due to noncompliance with installation requirements and operating conditions, overloading of parts in excess of the design values stipulated by Seller, negligent or faulty handling or the use of inappropriate materials, nor for defects attributable to material supplied by Buyer. Nor shall Seller be li- able for damage due to acts of third parties, atmospheric discharges. Excess voltage and chemical influences. The warranty does not cover the replacement of parts subject to natural wear and tear. Seller accepts no warranty for the sale of used goods.
8.9. The warranty shall lapse immediately if, without written consent of Seller, Buyer himself or a third party not expressly authorised undertakes modifications or repairs on any items delivered.
8.10. Claims acc. to $\S 933 \mathrm{~b}$ ABGB are struck by the statute of limitation with lapse of the period mentioned under point 8.2.
8.11. The provisions of sub-paragraphs 8.1 to 8.10 shall apply, mutatis mutandis, to all cases where the obligation to repair defects has to be accepted for other reasons laid down by law.
9. Withdrawal from contract
9.1. Buyer may withdraw from the contract only in the event of delays caused by gross negligence on the part of Seller and only after a reasonable period of grace has elapsed. Withdrawal from contract shall be notified in writing by registered mail.
9.2. Irrespective of his other rights Seller shall be entitled to withdraw from the contract
a) if the execution of delivery or the inception or continuation of services to be rendered under the contract is made impossible for reasons within the responsibility of Buyer and if the delay is extended beyond a reasonable period of grace allowed;
b) if doubts have arisen as to Buyer's creditworthiness and if same fails, on Seller's request, to make an advance payment or to provide adequate security prior to delivery, or
c) if, for reasons mentioned in 5.4 , the period allowed for delivery is extended by more than half of the period originally agreed or by at least 6 months, or
d) if Buyer does not or does not properly meet the obligations imposed as per paragraph 13.
9.3. For the reasons given above withdrawal from the contract shall also be possible in respect of any outstanding part of the delivery or service contracted for.
9.4. If bankruptcy proceedings are instituted against Buyer or an application for bankruptcy proceedings is not granted for insufficiency of assets, Seller may withdraw from the contract without allowing a period of grace. If this withdrawal is taken, it shall take effect immediately upon the decision that the business will not be continued. If the business will be continued, a withdrawal shall not take effect until 6 months after the institution of bankruptcy proceedings or after an application for bankruptcy proceedings has not been granted for insufficiency of assets. In any case, the contract shall be terminated immediately unless the bankruptcy law to which Buyer is subject conflicts with this or if termination of the contract is necessary to prevent significant damages to Seller.
9.5. Without prejudice to Seller's claim for damages including expenses arising prior to a lawsuit, upon withdrawal from contract any open accounts in respect of deliveries made or services rendered in whole or in part shall be settled according to contract This provision also covers deliveries or services not yet accepted by Buyer as well as any preparatory acts performed by Seller. Seller shall, however, have the option alternatively to require the restitution of articles already delivered.
9.6. Withdrawal from contract shall have no consequences other than those stipulated above.
9.7. The assertion of claims on the ground of laesio enormis, error, or lapse of purpose by the Buyer is excluded.
10. Disposal of waste electrical and electronic equipment
10.1. The Buyer of electrical/electronic equipment for commercial purposes, incorporated in Austria, is responsible for the financing of the collection and treatment of waste electrical and electronic equipment as defined by the Ordinance Regulating the Handling of Waste Electrical Equipment, if he is himself the user of the electrical/electronic equipment. If the Buyer is not the end user, he shall transfer the full financial commitment to his customer by agreement and furnish proof thereof to the Seller.
10.2. The Buyer incorporated in Austria shall ensure that the Seller is provided with all information necessary to meet the Seller's obligations as manufacturer/ importer, particularly according to $\S \S 11$ and 24 of the Ordinance Regulating the Handling of Waste Electrical Equipment and the Waste Management Act.
10.3. The Buyer incorporated in Austria is liable vis-à-vis the Seller for any damage and other financial disadvantages incurred by Seller due to Buyer's failure to meet or fully meet his financing commitment or any other obligations according to Article 10. The Buyer shall bear the burden of proof of performance of this obligation.
11. Seller's liability
11.1. Outside the scope of the Product Liability Act, Seller shall be liable only if the damage in question is proved to be due to intentional acts or acts of gross negligence, within the limits of statutory provisions. Seller's total liability in cases of gross negligence is limited to the net value of the order or EUR 500,000, depending on which amount is lower.
11.2. For each incident of damage, Seller shall be liable for 25% of the net value of the order or EUR 125,000 , depending on which amount is lower.
11.3. Seller shall not be liable for damage due to acts of ordinary negligence nor for consequential damages or damages for pure economic loss, indirect damages, loss of production, financing costs, costs for replacement energy, loss of energy, data or information, loss of profits, loss of savings or interest, or damage resulting from third-party claims against buyer.
11.4. Seller shall not be liable for damages in case of non-compliance with instructions for assembly, commissioning and operation (such as are contained in instructions for use) or non-compliance with licensing requirements.
11.5. Claims that exceed the contractual penalties that were agreed on are excluded from the respective title. The provisions of paragraph 11 apply exclusively for all claims by Buyer against Seller, regardless of the legal basis or entitlement, and also apply to all employees, subcontractors and subsuppliers of Seller.

12. Industrial property rights and copyrights

12.1. Buyer shall indemnify Seller and hold him harmless against any claims for any infringement of industrial property rights raised against him if Seller manufactures an article pursuant to any design data, design drawings, models or other specifications made available to him by Buyer.
12.2. Design documents such as plans and drawings and other technical specifications as well as samples, catalogues, prospectuses, pictures and the like shall remain the intellectual property of Seller and are subject to the relevant statutory provisions governing reproduction, imitation, competition etc. The provisions of 2.2 above shall also cover design documents.
13. Compliance with export provisions
13.1. When passing on goods delivered by Seller to third parties (as well as any related documentation, regardless of the method of provision or the services performed by Seller [including technical support of any kind]), Buyer must comply with the applicable regulations of national and international (re-)export provisions. In any case, Buyer must observe the (re-)export provisions of Seller's country of residence, the European Union and the United States of America.
13.2. If necessary for export controls, Buyer must provide Seller with all necessary information immediately after being requested to do so, for example, information about the final recipient, final destination and purpose of the goods or services.
14. General

Should individual provisions of the contract or of these provisions be invalid the validity of the other provisions shall not be affected. The invalid provision shall be replaced by a valid one, which comes as close to the target goal as possible.
15. Jurisdiction and applicable law

Any litigations arising under the contract including litigations over the existence or non-existence thereof shall fall within the exclusive jurisdiction of the competent court at Sellers domicile; the competent court of the Bezirksgericht Innere Stadt, Vienna, shall have exclusive jurisdiction if Seller is domiciled in Vienna. The contract is subject to Austrian law excluding the referral rules. Application of the UN Convention on Contracts for the International Sale of Goods is renounced.
16. Proviso

The execution of the contract by Seller is subject to the condition that there are no obstacles standing in the way of execution due to national or international (re-)export provisions, and especially no embargos and/or other sanctions.

SCHRACK TECHNIK GMBH

Seybelgasse 13, 1230 Wien PHONE $+43(0) 1 / 86685-5900$
FAX $\quad+43(0) 1 / 86685-98800$
E-MAIL info@schrack.at

SCHRACK SUBSIDIARIES

BELGIUM

SCHRACK TECHNIK B.V.B.A
Twaalfapostelenstraat 14 BE-9051 St-Deniis-Westrem PHONE +329/384 7992
FAX $\quad+329 / 3848769$
E-MAIL info@schrack.be
BOSNIA-HERZEGOVINA
SCHRACK TECHNIK BH D.O.O.
Put za aluminiijki kombinat bb BH-88000 Mostar
PHONE +387/36 333666
FAX $\quad+387 / 36333667$
E-MAIL schrack@schrack.ba

BULGARIA

SCHRACK TECHNIK EOOD
Prof. Tsvetan Lazarov 162
Druzhba-2
BG-1582 Sofia
PHONE +359 2/890 7913
FAX $\quad+3592 / 8907930$
E-MAIL sofia@schrack.bg

CROATIA

SCHRACK TECHNIK D.O.O
Zavrtnica 17
HR-10000 Zagreb
PHONE +385 1/605 5500
FAX +385 1/605 5566
E-MAIL schrack@schrack.hr

CZECH REPUBLIC

SCHRACK TECHNIK SPOL. SR.O. Dolnomecholupska 2
CZ-10200 Praha 10 - Hostivar PHONE +42(0)2/810 08264
FAX $\quad+42(0) 2 / 81008462$
E-MAIL praha@schrack.cz

HUNGARY

SCHRACK TECHNIK KFT.
Vidor u. 5
H-1172 Budapest
PHONE +36 1/253 1401
FAX +36 1/253 1491
E-MAIL schrack@schrack.hu

GERMANY

SCHRACK TECHNIK GMBH
Thomas-Wimmer-Ring 17
D-80539 Munich
PHONE +49 89/999 533900
FAX $\quad+49$ 89/999 533902
E-MAIL info@schrack-technik.de

POLAND

SCHRACK TECHNIK POLSKA
SP.ZO.O.
ul. Staniewicka 5
PL-03-310 Warszawa
PHONE +48 22/205 3100
FAX $\quad+4822 / 2053101$

E-MAIL kontakt@schrack.pl

ROMANIA

SCHRACK TECHNIK SRL
B-dul Iuliu Maniu nr 453-457, sect. 6
RO-061101 Bucharest
PHONE \quad +40 21/317 023542
FAX $\quad+4021 / 3170262$
E-MAIL bucuresti@schrack.ro

SERBIA

SCHRACK TECHNIK D.O.O
Bulevar Peka Dapčevića 42
RS-11000 Beograd
PHONE +38 1/113092600
FAX $\quad+381 / 113092620$
E-MAIL office@schrack.rs

SLOVAKIA

SCHRACK TECHNIK S.R.O.
Ivanská cesta 10/C
SK-82104 Bratislava
PHONE +42 (02)/491 08101
FAX $\quad+42(02) / 49108199$
E-MAIL info@schrack.sk

SLOVENIA

SCHRACK TECHNIK D.O.O
Pameče 175
SLO-2380 Slovenj Gradec PHONE +38 6/2 8839200
FAX $\quad+386 / 28843471$
E-MAIL schrack.sg@schrack.si

[^0]: SchRA든

[^1]: General Info
 View of the terminals, dimensions in mm
 Equipping with indicated hole diameter also
 possible in 2.5 mm or 2.54 mm contact spacing

[^2]: *Contact position not defined at delivery

[^3]: 1) Auxiliary contacts suitable for electronic circuits, according EN60947-5-4 for rated voltage 24VDC
[^4]: 1) DIN rail TS 35
[^5]: Screw terminals with surge suppressor, auxiliary contact block and mounted thermal overload relay.
 $\mathrm{a}=0 \mathrm{~mm}$ with varistor $<240 \mathrm{~V}$, diode assembly
 $a=3.5 \mathrm{~mm}$ with varistor $>240 \mathrm{~V}$
 $a=17 \mathrm{~mm}$ with RC element
 $b=D C 15 \mathrm{~mm}$ deeper than $A C$

 1) Auxiliary contact block, laterally mountable
 2) Auxiliary contact block, mountable on the front, 1-and 4-pole
 3) Surge suppressor
 4) Drilling pattern
[^6]: Terminal designations according to EN 50012

[^7]: Terminal designations according to EN 50012

 1) $2 \mathrm{NO}+2 \mathrm{NC}$ or $4 \mathrm{NO}+4 \mathrm{NC}$

 With laterally included auxiliary contact block LSZOD711 ($2 \mathrm{NO}+2 \mathrm{NC}$)
 Can be extended by LSZ3D811 to $4 \mathrm{NO}+4 \mathrm{NC}$
 2) $4 N O+4 N C$

 No further auxiliary contacts possible

[^8]: Terminal designations according to EN 50005

[^9]: Lateral distance to grounded components $=6 \mathrm{~mm}$.

 1) Auxiliary contact block
 2) Surge suppressor
 3) Drilling pattern
[^10]: Auxiliary contact block, size 00

 1) according to EN 50005, Screw terminals, 1 - to 4 -pole
 2) according to EN 50005, Screw terminals, cable entry from below, 1-pole
[^11]: 2) with LSZOW002 mechanical interlock.
[^12]: 1) $90^{\circ} \mathrm{C}$: reduces the control voltage range to 0.9 up to $1.0 \times \mathrm{U}_{\mathrm{s}}$ and reduces the rated current $\mathrm{I}_{\mathrm{e}} / \mathrm{ACl}$ to the value of $\mathrm{I}_{\mathrm{e}} / \mathrm{AC} 3$
[^13]: 1) With reduced control voltage range 0.9 up to $1.0 \times \mathrm{U}_{5}$ and with reduced rated current $\mathrm{I}_{\mathrm{e}} / \mathrm{ACl}$ according to $\mathrm{I}_{\mathrm{e}} / \mathrm{AC} 3$
[^14]: 1) Suitable for: earthed-neutral systems, overvoltage category I to IV , pollution degree 3 (standard-industry): $U_{\mathrm{imp}}=8 \mathrm{kV}$. Data for other conditions on request
 2) Total breaking time $=$ release time + arc duration
 3) Values for delay of the release time of the make contact and the make time of the break contact will be increased, if magnet coils are protected against voltage peaks (varistor, RCunit, diode-unit)
[^15]: 1) Suitable at 690V for: earthed-neutral systems, overvoltage category I to IV. pollution degree 3 (standard-industry): $\mathrm{U}_{\mathrm{imp}}=8 \mathrm{kV}$. Data for other conditions on request.
[^16]: 1) Suitable at 690 V for: earthed-neutral systems, overvoltage category I to IV , pollution degree 3 (standard-industry): $\mathrm{U}_{\text {imp }}=8 \mathrm{kV}$.
[^17]: 1) 90° reduces the control voltage range to 0.9 up to $1.0 \times U_{s}$ and reduces the rated current $I_{e} / \mathrm{AC} 1$ to the value of $\mathrm{I}_{\mathrm{e}} / \mathrm{AC} 3$
[^18]: 1) Suitable at 690 V for: earthed-neutral systems, overvoltage category I to IV , pollution degree 3 (standard-industry): $\mathrm{U}_{\text {imp }}=8 \mathrm{kV}$.
[^19]: 1) Metal halide lamps and sodium-vapour lamps (high- and low-pressure lamps)
 2) High-pressure lamps
 3) Blended lamps, containing a mercury high-pressure unit and a tungsten helix in a fluorescent glass bulb (daylight lamps)
 4) Current inrush approx. $16 \times I_{\text {e }}$
 5) With central compensation pay attention to the current inrush (capacitor switching contactors)
[^20]: 1) Suitable for: earthed-neutral systems, overvoltage category I to IV, pollution degree 3 (standard-industry): $\mathrm{U}_{\text {imp }}=8 \mathrm{kV}$. Data for other conditions on request
 2) Total breaking time $=$ release time + arc duration
 3) Values for delay of the release time of the make contact and the make time of the break contact will be increased, if magnet coils are protected against voltage peaks (varistor, RC-unit, diode-unit)
[^21]: 1) Millions of Operations
[^22]: 1) Industrial furnaces and electric heaters with resistance heating, etc. (increased power consumption on heating up has been taken into account).
[^23]: 1）Depending on the electronic ballast used，higher lamp numbers are also possible

[^24]: 1) If two different conductor cross-sections are connected to one clamping point, both cross-sections must lie in the range specified. If identical cross-sections are used, this restriction does not apply.
[^25]: 1）Industrial furnaces and electric heaters with resistance heating，etc．（increased power consumption on heating up has been taken into account）．
 2）According to IEC 60947－4－1．For rated values for various start－up conditions see：Thermal Overload Relays．
 3）Depending on the electronic ballast used，higher lamp numbers are also possible．

[^26]: 1) Industrial furnaces and electric heaters with resistance heating, etc. (increased power consumption on heating up has been taken into account).
 2) According to IEC 60947-4-1. For rated values for various start-up conditions see: Thermal Overload Relays.
 3) Depending on the electronic ballast used, higher lamp numbers are also possible.
[^27]: 1) If bars larger than $12 \times 10 \mathrm{~mm}$ are connected, a terminal cover is needed to comply with the phase clearance (on request).
 2) If conductors larger than $25 \mathrm{~mm}^{2}$ are connected, a terminal cover is needed to comply with the phase clearance (on request).
 3) Only with crimped cable lugs according to DIN 46234. Cable lug max. 20 mm wide.
 4) If two different conductor cross-sections are connected to one clamping point, both cross-sections must lie in the range specified. If identical cross-sections are used, this restriction does not apply.

[^28]: 1) Industrial furnaces and electric heaters with resistance heating, etc. (increased power consumption on heating up has been taken into account)
[^29]: 1) In accordance with the corresponding 3-pole LSD contactors
[^30]: 1) If bars larger than $12 \times 10 \mathrm{~mm}$ are connected, a terminal cover is needed to comply with the phase clearance. (on request)
 2) When connecting conductors which are larger than $25 \mathrm{~mm}^{2}$, the terminal cover must be used to keep the phase clearance. (on request)
 3) Only with crimped cable lugs according to DIN 46234 . Cable lug max. 20 mm wide.
 4) If two different conductor cross-sections are connected to one clamping point, both cross-sections must lie in the range specified. If identical cross-sections are used, this restriction does not apply.
[^31]: 1) with three-phase load - Proceeding from service condition the times decrease to $20-30 \%$ of the characteristic values.
 2) with two-pole load - Proceeding from service condition the times decrease to $70-80 \%$ of the characteristic values.
 a) Tripping time (Average value of typical tolerance curves from cold condition)
 b) F. L. C. multiplication factor
[^32]: 1) Assignment and short-circuit protective devices according to IEC60947-4-1:

 The contactor or starter must not endanger persons or the installation in the event of a short-circuit.
 Type of coordination 1: The contactor or the starter may be non-operational after every short-circuit release.
 Type of coordination 2: The contactor or the starter must be operational after a short-circuit release (without replacement of parts).
 Welding of the contacts is permissible however.

[^33]: 1) Tripping time 3 3- 2-pole loading
 2) Current \quad 4) 3-pole loading
[^34]: 1) Feeding terminal block
[^35]: BEZOOO12 with membrane, BEZOOO13 with emergency stop mushroom head for motor protection switches size 00

 1) Knock-outs for M25
 2) Knock-outs for rear cable entry M20
 3) Locking plate BEZOOO14
 4) EMERGENCY-STOP mushroom button
 5) Max. shackle diameter for padlock 8 mm
 a) Dimensions refer to mounting surface
[^36]: 1) hp rating = Power rating in horse power (maximum motor rating).
 2) FLA = Full Load Amps/Motor full load current.
 3) Complies with "short-circuit breaking capacity" according to UL.
